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Mechanics Guest Editorial
Vision of the Future of Solid Mechanics
Although mechanics is the oldest field of science, it is still
advancing rapidly, driven, in all areas of technology, by the need:

�1� to develop fundamental understanding of material and sys-
tem behavior at multiple scales;

�2� to deduce realistic mesoscopic and macroscopic models,
and verify and calibrate them experimentally;

�3� to advance the understanding of failure mechanisms of ma-
terials, structures, and systems;

�4� to achieve mechanically and functionally superior perfor-
mance, ensuring a near-zero incidence of failure and mini-
mal long-term deterioration; and

�5� to advance the understanding and robustness of diverse
complex systems such as those found in biology and
nanotechnology.

Advances in solid mechanics are made possible by new superior
instrumentation, novel and ingenious experimental methods, bet-
ter mathematical models, even more powerful computational
tools, and new and growing interactions with an ever expanding
range of disciplines.

Importance of Mechanics in the Modern World
The successful development of technology in broad fields of

activity still crucially depends on advances in solid mechanics and
its application. Opportunities can be identified in areas such as
electronics, where devices depend on successful utilization of me-
chanical effects as much as on electrical phenomena, with ex-
amples including epitaxy, strain dependent band-gaps and the in-
tegrity of electrical leads and connections, dies, and circuit boards.
Biology, whether related to medical treatments, involving prosthe-
ses, stents, and implants, or regarding the growth, function, adhe-
sion, and motion of cells, the conformation and interaction of
proteins, and the ubiquity of DNA and other molecules, is replete
with issues such as dynamics, compatibility, and constitutive re-
sponse that are the bread and butter of solid mechanics. Diverse
fields of engineering are still vitalized by advances in solid me-
chanics, including blast resistant structures, tough, strong, and du-
rable advanced materials, thermal protection systems, and deploy-
able structures.

Frustrations exist that can be remedied by future developments
in solid mechanics, whether it is the absence of hypersonic ve-
hicles due to inadequacies in stiffness, strength, and temperature
resistance of materials, of the unpredictability of earthquakes,
landslides, and avalanches due to inadequate advances in the un-
derstanding of large-scale frictional cohesive shear fracture in het-
erogeneous materials. Also, the insufficient durability of hip re-
placements and other prostheses requires a much better
understanding of long-term progressive damage and frictional
wear of composites and micro-porous metals. The poor fatigue
resistance and durability of systems in aggressive environments
demands better technology to avoid many catastrophic failures
and to achieve enormous savings by extension of the lifespan of

our nation’s infrastructure.
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Avoidable failures continue to occur, and ensuring that they are
not repeated in the future depends on continued advances in solid
mechanics. Consider some examples: both space shuttle disasters
have been traced to material failure �leakage of a seal in one case
and loss of integrity of structure and thermal protection in the
other�; the crash of a DC-10 in takeoff from O’Hare Airport in
1979 was caused by a fatigue crack in an engine pylon; the crash
of an Airbus shortly after takeoff from JFK Airport in 2001 was
probably caused by overload fracture in a large vertical stabilizer
made of advanced composites; the World Trade Center collapse
was triggered by viscoplastic deformation of columns heated by
fire; and the giant Sleipner oil platform would not have sunk, and
earthquakes would not have destroyed the viaducts in Kobe, Oak-
land, or Los Angeles, were quasi-brittle compression-shear frac-
ture and its scaling understood.

Evidently, mechanics of solids is the controlling factor in many
advanced technologies, a roadblock to implementing innovative
technologies, and the explanation for many catastrophes. Ad-
vanced experimental methods and large-scale computer simula-
tions are now rendering realistic simulation and prediction fea-
sible. We have great opportunities for research.

We also face challenges in education. We need to attract and
train new generations of solid mechanicians at a time when the
preparation of the young in mathematics and science is degrading,
while many students perceive other opportunities to be more at-
tractive or glamorous, and most universities are no longer inter-
ested in mechanics programs. In the face of this, the tensorial
nature of solid mechanics, the nonlinearities of constitutive behav-
ior, and the complexities of damage and scaling necessitate pro-
longed training in a focused program.

Solid mechanics is a unifying discipline. Cutting across many
professions, it is perhaps the most interdisciplinary scientific ac-
tivity in the leading engineering schools. The scientific field is
one, but its interventions span mechanical, aeronautical, aero-
space, civil, materials, biomedical, chemical, environmental,
nuclear, offshore, naval, arctic, and electrical engineering, as well
as the sciences of materials, biology, chemistry, physics, geophys-
ics, and planetology.

Challenges and Opportunities for Research
With no claim for completeness, a diverse set can be as-

sembled:

�1� Multiscale modeling, connecting the hierarchy of scales in
materials �nano-micro-meso-macro�, is a dominant trend.
Embedding a discrete model at one scale �e.g., atomistic
simulation, simulation of discrete dislocations, simulation
of particles or fibers in a matrix, the role of nanopores in
concrete� into a continuum model at the next higher scale is
a challenge where success can yield superior understanding
of composites, polycrystals, and porous or cellular materi-
als.

�2� Failure scaling and size effects represent a companion

problem—that of finding the laws of transition among re-
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gimes whose scaling individually can be characterized by
power laws; e.g., the transition from a discrete local scale
of fibers or particles embedded in a matrix to a continuum
representing a composite; from crystal grains with disloca-
tions to a continuous thin film; from intact rock blocks to a
mountain mass intersected by rock joints; or from mile-size
ice floes separated by thin ice to the continuous cover of the
entire Arctic Ocean.

�3� While composite materials had their dawn much before
nanotechnology, they still present great opportunities. Their
promise for load-bearing aerospace and ship structures re-
sides in their high strength-weight ratio and energy absorp-
tion, as well as potentially easier maintenance. Hurdles to
overcome exist in processing, fracture and size effect pre-
diction, moisture ingress, and damage detection.

�4� Nanotechnology has become a booming field. Design
against fracture and debonding of submicrometer metallic
thin films for electronic components, development of super-
stiff super-strong nanocomposites of low brittleness and
wear, exploitation of the symbiotic strength, electronic and
thermal properties of carbon nanotubes, etc., present unique
opportunities for nanomechanics.

�5� Detection of damage such as cracks and corrosion in aging
aircraft, steel bridges, nuclear reactor vessels, ocean struc-
tures, etc., is of paramount importance. Nondestructive test-
ing requires sophisticated inverse analysis of acoustic wave
propagation problems. Despite great advances, much more
is needed, not least for fiber and particulate composites
where acoustic wave dispersion by inhomogeneities poses
hard obstacles to detection.

�6� A related task is the development of sensors, especially
nanosensors, for “smart” structures and devices that can
signal information on their damage, and thus allow auto-
matic structural health monitoring if structural system iden-
tification by inverse structural analysis is mastered. Adap-
tive smart structures and devices, capable of controlled
expansion, contraction, flexing, and stiffening, will be im-
portant for self-deployable space structures, damping of
seismic oscillations, etc.

�7� Chemomechanics, applied, e.g., to concrete subjected to
chemical attack involving diffusion and thermal effects, is a
fertile field bound to improve structural durability and serve
environmental objectives �e.g., embedding waste glass in
concrete�. Similar phenomena, such as crystallographic
phase conversion, are making polycrystalline shape-
memory alloys attractive for smart structures. In biology,
chemomechanics presents fascinating challenges demand-
ing new multidisciplinary approaches.

�8� Bio-inspired materials offer intriguing examples of me-
chanical superiority. The abalone shell achieves its amaz-
ing strength, fatigue resistance, and shock resistance by an
intricate design and self-assembly of nanoparticles of brittle
182 / Vol. 73, MARCH 2006
calcite bound with a small amount of protein-based poly-
mer. Some sponges achieve toughness and robustness by
integrating brittle materials over at least seven scales. The
combination of strength and deformability of spider thread
has not yet been equaled. Such feats demonstrate what is
achievable. Biomechanics, a long-burgeoning field, appears
headed for perpetual growth, with applications to os-
teoporosis and fracture of bones, large strain of anisotropic
blood vessels or soft tissues, etc. This field is today reach-
ing into intriguing questions regarding the cytoskeletons of
cells, the conformity and compatibility of biological poly-
mers and proteins, and the mechanical behavior of DNA
and related molecules.

�9� Probabilistic mechanics and reliability analysis have
reached a high degree of mathematical sophistication, yet
still present great opportunities, especially for extensions of
primitive material models to quasi-brittle fracture with lo-
calization and scale effects, multiscale and nano-based
models, coupling with poromechanics, heterogeneities, dif-
fusion, etc. Advances will especially be required in the un-
derstanding of extreme-value statistics of random fields in
the context of damage localization, quasi-brittle fracture
with size effects, and multiscale models. Because of the
large values of empirical safety factors used in mechanical
design, rationalizing them with extreme-value based statis-
tical mechanics is an enormously promising prospect.

A host of other challenges could be elaborated on. For all of
them, simplicity of modeling will be essential for conquering
complexity. Usually, only a few characteristics among many
dominate the response of a complex mechanical system. The goal
of theory is to identify them and condense them into rationally
derived but simple laws describing, at least approximately, the
overall behavior of the system. This is what much of materials
science has been concerned with.

While simple laws governing the mechanical response of struc-
tures will obviously be essential for progress in civil engineering
�where thousands of structures, each different, are designed annu-
ally�, they will be no less important as an optimizing tool in all
fields of application of mechanics, including those were only a
few new designs appear annually �as in aircraft or automotive
engineering�. A computer allows a brute-force conquest of com-
plex individual situations, but it is the discovery of a simple math-
ematical law that lends us general understanding, and thus control.

Progress in developing solid mechanics theories and practical
approaches to all these problems is sure to happen eventually, but
the question is when and where. An institution, firm, or country
that will lead in this pursuit in an aggressive manner will reap
many benefits.

Zdeněk P. Bažant
Transactions of the ASME
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Green’s Function for a Closed,
Infinite, Circular Cylindrical
Elastic Shell
An acceptable variant of the Koiter–Morley equations for an elastically isotropic circular
cylindrical shell is replaced by a constant coefficient fourth-order partial differential
equation for a complex-valued displacement-stress function. An approximate formal so-
lution for the associated “free-space” Green’s function (i.e., the Green’s function for a
closed, infinite shell) is derived using an inner and outer expansion. The point wise error
in this solution is shown rigorously to be of relative order �h /a��1+�h /a�x��, where h is
the constant thickness of the shell, a is the radius of the mid surface, and ax is distance
along a generator of the mid surface. �DOI: 10.1115/1.2065627�
To the memory of J. Lyell Sanders, Jr. (1924-1998): friend, colleague, mentor, and shell theorist extraordinary
1 Introduction

Elastically isotropic circular cylindrical shells are basic struc-
tural elements and a useful tool in their analysis, e.g., by the
boundary element method, is the associated free-space Green’s
function, i.e., the Green’s function for a closed, infinite shell.
Herein, we first construct an accurate approximation GA to the
dimensionless Green’s function G for the fourth-order, complex-
valued, constant-coefficient partial differential equations to which
the first-approximation Sanders–Koiter shell equations �1,2� may
be reduced for an elastically isotropic material �3�. GA is ex-
pressed as the sum of a formal inner solution comprising the shal-
low shell Green’s function developed by Sanders and Simmonds
�4� plus a formal outer solution involving easily computed func-
tions, minus an explicit common part.

Next, using Fourier series in the circumferential direction and
Fourier transforms in the axial direction, we obtain an integral
expression for the nth Fourier component of the residual R�G
−GA. Then, using simple upper bound estimates, we show that
�R�=O��h /a��1+�h /a�x���. Because G itself is O��h /a�x��, the
relative error in R is O�h /a�.

The present paper presents, in part, a simplification and exten-
sion of work by Buchwald �5� who, though not concerned with the
construction of a Green’s function per se, considers the closely
related problem of determining the normal mid surface deflection
W of an infinite, circular cylindrical shell under single and mul-
tiple radial loads. Buchwald solves Morley’s eighth-order partial
differential equation for W �6,7� by combining Fourier transform
methods �following Lighthill �8�� with an inner and outer expan-
sion procedure that takes advantage of the small thickness to ra-
dius ratio appearing in Morley’s equation. �The inner region of a
closed, infinite cylindrical shell under a point load is a small
neighborhood of the mid surface centered about the point of ap-
plication of the load; the outer region is the remainder of the mid
surface.� One of our extensions of Buchwald’s work is a new

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received November 11, 2004; final
manuscript received January 28, 2005. Review conducted by N. Triantafyllides. Dis-
cussion on the paper should be addressed to the Editor, Prof. Robert M. McMeeking,
Journal of Applied Mechanics, Department of Mechanical and Environmental Engi-
neering, University of California-Santa Barbara, Santa Barbara, CA 93106-5070, and
will be accepted until four months after publication in the paper itself in the ASME

JOURNAL OF APPLIED MECHANICS.
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expansion of the outer solution useful for small values of the axial
variable.

In place of Morley’s equation for W we work with an equally
accurate fourth-order partial differential equation for the complex-
valued dependent variable �=W+ i�A /DF, where, convention-
ally, A=1/Eh, D=Eh3 /12�1−�3�, E is Young’s modulus, � is
Poisson’s ratio, and F is a stress function �3�. This simplifies al-
gebra and the auxiliary equations for stresses and tangential dis-
placements. Our Green’s function G satisfied the equation for �
with the non-homogeneous term on the right side �that involves
both normal and tangential loads� replaced by a certain constant
times a two-dimensional delta function.

2 Governing Equations
Let ax and ay denote, respectively, distance along the mid sur-

face in the axial and circumferential directions, let a prime and a
dot denote differentiation with respect to x and y, let � denote the
Laplacian, and let �px , py , p	 denote the components of the distrib-
uted surface loads in the axial, circumferential, and outward nor-
mal directions. Derived from the Sanders–Koiter equations of
general first-approximation shell theory �1,2�, the basic partial dif-
ferential equation, given by Eq. �7.1� of �3� with the arbitrary O�1�
constant set to zero, reads

M� � ��� + �·· − 4i�2�� = �a3/D���� + �i/4�2���� − �1 + ��

��px� + py
· ��	 �1�

where −�	x	� ,−
	y�
,

4�2 = a/�AD = �12�1 − �2�a/h �2�

is a large parameter, and

� =

0

x

0

x̃ �p +

0

y

pydȳ�dx̂dx̃, � = � +

0

x

pxdx̄ +

0

y

pydȳ

�3�

are load potentials. In obtaining these equations, we have re-
placed, respectively, the symbols �, F*, �, and �2 in �3� by a�,
F, 0, and 2�2. Auxiliary equations for stress resultants, stress
couples, and displacements, that are needed, for example, to use
the boundary element method, may be found in �3� and will not be

repeated here.

MARCH 2006, Vol. 73 / 18306 by ASME



3 Green’s Function
For a closed, infinite, circular cylindrical shell �−�	x	� ,

−
	y�
�, we define the Green’s function G�x ,y ;�� to be that
solution of Eq. �1� with the right side replaced by 4
��x��y�
that is 2
 periodic in y and that grows, at most, algebraically as
�x�→�. These conditions determine G uniquely to within rigid-
body-like terms. Equivalently, we may consider Eq. �1� in the
whole xy plane with the right side replaced by

4
��x�
−�

�

�y − 2n
� = 2��x��1 + 2 cos y + 2
2

�

cos ny� .

�4�

Strictly speaking, this equation must be interpreted in a distribu-
tional sense. Alternatively, we could replace the infinite sum on
the right by a finite sum from 2 to some positive integer N and at
an appropriate stage let N→�.

3.1 Physical Interpretation. The two-dimensional delta
functions strung out along the y axis do not correspond to a simple
normal point load. To see exactly what loading could produce G,
assume that the in-plane external surface loads are derivable from
a load potential such that px=�� and py =�·. Then from Eq. �1�

4
��x�
−�

�

�y − 2
n� = �a3/D���� + �i/4�2���� − �1 + ����	 .

�5�

This equation can be satisfied by taking

� = �1 + ��� and � = 2
��D/a3��x�
−�

�

�y − 2n
� . �6�

But �=�+2�. Thus,

�1 − ��� = − 2
�D/a3��x�
−�

�

�y − 2n
� . �7�

The normal pressure is found from the relation p=��−�pydy
=��−�. It now follows that G�x ,y ;�� represents the solution of
Eq. �1� for an infinite circular cylindrical shell under the surface
loading

�px

py

p
� =

2
D�

�1 − ��a3� − sgn x

− �x�
2�1 − ���x� + �x�

�−�

�

�y − 2n
� . �8�

These loads are not self-equilibrating but give rise to a shear force
and moment acting over any cross section x=constant. This is to
be expected given that the dimensionless Green’ function for an
infinite Euler–Bernoulli beam is G�x�= �1/12�x2�x�, with associ-
ated dimensionless shear force �1/2�sgn x and moment �1/2��x�.

Note that for a 2
 periodic of normal point loads along the y
axis of the form

p�x� = �D/a3��x�
−�

�

�y − 2n
� �9�

the right side of Eq. �1� becomes

�1 + i/4�2��x�
−�

�

�y − 2n
� + �i/8�2��x�
−�

�

��y − 2n
� ,

�10�

which reinforces the point made in the first sentence of this sub-
section that the Green’s function G does not correspond to a

simple distribution of normal point loads.
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4 Approximate Green’s Function

4.1 Inner Solution. With the change of variables

x̄ = �x, ȳ = �y , �11�

Eq. �1� takes the form

��̄�̄ + �−2�2/�ȳ2 − 4i�2/�x̄2�G = 4
�−1�x̄�
−�

�

�ȳ − 2n�
�,

− � 	 x̄, ȳ 	 � , �12�

where �̄=�2 /�x̄2+�2 /�ȳ2. If we replace the right side of Eq. �12�
by ��x̄��ȳ� and let �→�, we obtain an equation whose solution
follows from Eq. �64� of �4� as

� = 4
�w = i3/2�T�x̄, ȳ� + ȳQ�x̄, ȳ��, − � 	 x̄, ȳ 	 � , �13�

where

Q = �1/2��P�r̄,�� + P�r̄,
 − ��� �14�

and

T = x̄ sinh�i1/2x̄�K0�i1/2r̄� + r̄ cosh�i1/2x̄�K1�i1/2r̄� . �15�

In these equations i1/2=ei
/4, i3/4=e3i
/4, r̄��x̄2+ ȳ2, K0 and K1
are modified Bessel functions of the second kind �that may be
expressed in terms of the real-valued ker and kei functions�, and P
is a complex-valued function described in detail in the section of
�4� labeled Function P that begins with Eq. �77�. We now define
the approximate inner Green’s function as

Ḡ�x̄, ȳ ;�� � �−1
−�

�

��x̄, ȳ − 2n�
� . �16�

That Eq. �16� is a formal approximate solution is of no real con-
sequence as we shall show rigorously in Sec. 6 that the various
approximate Green’s functions can be pieced together to approxi-
mate the exact Green’s function to within a point wise error of
O��h /a��1+�h /a�x���.

4.2 Outer Solution. Let

x = 2�x̃ and G = G̃�x̃,y ;�� . �17�

Then Eq. �1� may be given the form

G̃···· + G̃·· + �1/2��−2�2G̃··/�x̃2 + �1/16��−4�4G̃/�x̃4 − i�2G̃/�x̃2

= �x̃��1 + 2 cos y + 2
2

�

cos ny� . �18�

Assume the Fourier expansion

G̃�x̃,y ;�� = 
0

�

On�x�cos ny , �19�

where the “O” is a mnemonic for “outer.” Then for n=0 and n
=1, Eq. �18� yields the algebraic solutions

O0 = b0 + �i/2��x̃�, O1 = b1 + i�x̃� , �20�

where b0 and b1 are arbitrary constants that represent rigid-body-
like terms and will be set to zero. If n�2, Eq. �18� yields the
exponentially decaying solutions

On = −
i3/2 exp�i3/2n�n2 − 1�x̃��

n�n2 − 1
. �21�
Thus,
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˜

G̃�x̃,y ;�� = i�1/2 + cos y��x̃� − i3/2
2

�
exp�i3/2n�n2 − 1�x̃��cos ny

n�n2 − 1
.

�22�

The series converges absolutely but slowly if �x̃� is small. We

therefore now develop an alternative expansion for G̃�x̃ ,y ;�� that
converges rapidly if �x̃��1.

4.3 Alternative Expansion for G̃„x̃ ,y ;�…. Using a well-
known device, we replace the integer n in the series in Eq. �22� by
the complex variable �=�+ i�, multiply the summand by
−�1/2�i csc �
, and integrate the resulting meromorphic function
around a contour C1 enclosing the points �=2,3 , . . ., as shown in
Fig. 1. Because the residue of 
 csc �
 at �=n is �−1�n, we elimi-
nate this alternating factor by setting

cos ny = �− 1�n cos n�
 − �y�� . �23�

Thus,

− i3/2
2

�
exp�i3/2n�n2 − 1�x̃��cos ny

n�n2 − 1
=


C1

f�x̃,y ;��d� , �24�

where

f = −
i1/2 exp�i3/2���2 − 1�x̃��cos ��
 − �y��

2���2 − 1 sin �

. �25�

We make ��2−1 single valued �and analytic� by introducing a cut
in the � plane from �=−1 to �=1 and choosing that branch that
approaches � as ���→�, as illustrated in Fig. 1. This makes
���2−1 and f , respectively, even and odd functions of �.

Now consider the five distinct, non-overlapping contours,
C1 , . . . ,C5 shown in Fig. 1, where C4 is the mirror image of C1
about the imaginary axis and C5 is the negative mirror image of
C3 about the real axis. Because f is an analytic function of � at all
points of the cut � plane except at �= ±n ,n�2, we may distort
these contours so that parts of them coincide in such a way that



C1+¯+C5

fd� = 0. �26�

But, f is odd in �. Thus,



C4

f���d� =

C1

f�− ��d�− �� =

C1

fd� and 

C5

f���d�

= −

C3

f�− ��d�− �� =

C3

f���d� . �27�

Fig. 1 Diagram for converting the infinite series in Eq. „22… to a
finite sum of contour integrals
This yields
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C1

fd� = − �1/2�

C2

fd� −

C3

fd� . �28�

We now replace the exponential in Eq. �25� by the sum of a
hyperbolic cosine and sine, which makes
sinh�i3/2���2−1�x̃�� /���2−1 an analytic function of �. By the
residue theorem

i1/2

4 

C2

sinh�i3/2���2 − 1�x̃��cos ��
 − �y��

���2 − 1 sin �

d� = − i�1/2 + cos y��x̃� ,

�29�

so that from Eqs. �22�, �28�, and �29� we obtain the representation

G̃�x̃,y ;�� =
i1/2

4 

C2

cosh�i3/2���2 − 1�x̃��cos ��
 − �y��

���2 − 1 sin �

d�

−

C3

f�x̃,y ;��d� . �30�

Recalling that the object of this subsection is to obtain a useful

representation of G̃�x̃ ,y ;�� for small �x̃�, we now expand the first
integral in Eq. �30� in powers of x̃. Thus,

G̃�x̃,y ;�� = i−1/2
0

�

an�y��− ix̃2�n/�2n�! −

C3

f�x̃,y ;��d� ,

�31�

where

a0�y� =
i

4

C2

cos ��
 − �y��

���2 − 1 sin �

d� �32�

and

an�y� =

0

1

�2n−1�1 − �2�n−1/2 csc �
 cos ��
 − �y��d�, n � 1.

�33�

Note that the an�y� are real, even functions of y. Note also that
�C3

f�0,y ;��d�=0. To see why, let �=�+ ib, where b�0 is a
constant, use the double triangle inequality �z1�−�z2�� �z1+z2�
� �z1�+ �z2�, the exponential representations for the sine and co-
sine, and the inequality ����2−1��b��2+b2� to conclude that

�

C3

fd�� �
e−b�y��1 + e−2b�
−�y���

2b�1 − e−2b
� 

−�

�
d�

�2 + b2 → 0 as b → � .

�34�

The easiest way to compute a0�y� is to return to Eq. �22� and set
x=0 so that

a0�y� = 
2

�
cos ny

n�n2 − 1
. �35�

To improve the convergence of this series and to display explicitly
terms up to O�y2�, we set cos ny=1−2 sin2 ny /2, add and subtract
the series 2

��1/n2�sin2 ny /2, and use series 683 of �9�. Thus,

a0 = 1 + 
2

�
1

n�n2 − 1
− cos y −


�y�
2

+
y2

4

− 2
2

�
n − �n2 − 1

n2�n2 − 1
sin2 ny/2. �36�

2 2
Because sin � /2� �1/4�� ,
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� y2

4
− 2

2

�
n − �n2 − 1

n2�n2 − 1
sin2 ny/2�

� �1/4��1 + 2
2

�
1

�n2 − 1�n + �n2 − 1�
�y2 � Ky2. �37�

For n�2,an�y� can be computed from Eq. �33� using standard
numerical integration formulas. �For n=1, use an equation such as
�25.4.36� of �10� to handle the integrable singularity at �=1.�
Above is Table 1 for a0�y� to a3�y�.

To complete our representation of G̃�x̃ ,y ;�� for small x̃, we
consider the integral of f over C3. Since I��0 on C3, a part of f
may be rewritten as follows:

i csc �
 cos ��
 − �y�� = �ei��y� + ei��2
−�y���
0

�

ei2�n
 = ei��y�

+ 
1

�

ei��2n
+y� + 
1

�

ei��2n
−y�. �38�

Thus we may write



C3

fd� = S�x̃,y� + 
1

�

S�x̃,2n
 + y� + 
1

�

S�x̃,2n
 − y� ,

�39�

where

S�x̃,y� =
i3/2

2 

C3

exp�i3/2���2 − 1�x̃� + i��y��

���2 − 1
d� . �40�

The form of the right side of Eq. �39� shows that Eq. �40� repre-
sents the contribution of the delta function at the origin to the
integral of f over C3.

To obtain an expansion of S�x̃ ,y� in powers of x̃, we introduce
the change of variables

� =
i1/4�

��x̃�
, � =

i1/4�y�

2��x̃�
, �41�

Table 1 Taylor series coefficients

y /
 a0�y� a1�y� a2�y� a3�y�

0.00 0.694 22 −0.336 58 −0.047 47 −0.009 24
0.05 0.462 02 −0.301 41 −0.041 26 −0.007 96
0.10 0.260 44 −0.257 93 −0.034 26 −0.006 55
0.15 0.091 14 −0.206 79 −0.026 55 −0.005 02
0.20 −0.045 19 −0.148 81 −0.018 24 −0.003 40
0.25 −0.148 78 −0.084 97 −0.009 46 −0.001 70
0.30 −0.220 78 −0.016 37 −0.000 33 0.000 05
0.35 −0.263 15 0.055 78 0.009 01 0.001 82
0.40 −0.278 59 0.130 16 0.018 43 0.003 59
0.45 −0.270 45 0.205 41 0.027 77 0.005 34
0.50 −0.242 55 0.280 13 0.036 89 0.007 03
0.55 −0.199 09 0.352 93 0.045 65 0.008 65
0.60 −0.144 49 0.422 43 0.053 92 0.010 18
0.65 −0.083 22 0.487 30 0.061 55 0.011 58
0.70 −0.019 65 0.546 30 0.068 44 0.012 84
0.75 0.042 08 0.598 30 0.074 46 0.013 94
0.80 0.098 20 0.642 29 0.079 53 0.014 86
0.85 0.145 45 0.677 43 0.083 56 0.015 60
0.90 0.181 17 0.703 03 0.086 48 0.016 13
0.95 0.203 41 0.718 59 0.088 25 0.016 45
1.00 0.210 95 0.72381 0.088 85 0.016 56
write the argument of the exponent in Eq. �40� as
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i3/2���2 − 1�x̃� + i��y� = − �2�1 + i3/2�x̃�/�2 + i2�� = − �2 + �2�1

− �1 + i3/2�x̃�/�2� + i2�� �42�

and use the expansion

exp��2�1 − �1 + i3/2�x̃�/�2��
�1 + i3/2�x̃�/�2

= 1 −
i3/2

2
�1 +

1

�2��x̃� −
i

8
�1 +

3

�2

+
3

�4�x̃2 + ¯ . �43�

Insertion of Eq. �43� into Eq. �40� leaves us with integrals to
evaluate of the form

I2n��� � 

C3�

e−�2+i2��

�2n d� , �44�

where C3� is the image of C3 in the � plane.
Because I2n���=0 for all n and because Eq. �44� may be dif-

ferentiated n times under the integral sign, I2n��� may be ex-
pressed as an n-fold integral. In the standard way, this iterated
integral may be replaced by a single integral that may be ex-
pressed in closed form

I2n��� =
�2i�2n

�2n − 1�!

�

�

�t − ��2n−1�

C3�

e−�2+i2��d��dt

=
4n�− 1�n�


�2n − 1�! 

�

�

�t − ��2n−1e−t2dt = 22n−1�− 1�ni2n−1 erfc � ,

�45�

where in erfc � is the nth repeated integral of the complementary
error function. �See equation �7.2.3� of �10� and note that i� i.�
Hence,

S�x̃,y� = − i5/4
��x̃��i erfc � − �1/2�i3/2�i erfc � − 4i3 erfc ���x̃�

− �1/8�i�i erfc � − 12i3 erfc � + 48i5 erfc ��x̃2 + ¯ � .

�46�

To use existing tables to evaluate S�x̃ ,y�, it is necessary to express
each iterated complementary error function in terms of erfc � and
e−�2

. By Eqs. �7.2.1�, �7.2.5�, and �7.2.6� of �10�,

S�x̃,y� = − i5/4
��x̃�� e−�2

�

− � erfc � −

i3/2

6
� e−�2

�

�1 − 2�2�

+ 2�3 erfc ���x̃� +
i

80
� e−�2

�

�1 + �2 − 2�4� − ��5

− 4�4�erfc ��x̃2 + ¯ � �47�

Because in erfc � decays rapidly as �= i1/4�y� /2��x̃� grows, it is
clear from Eqs. �39� and �46� that �C3

fd��S�x̃ ,y�, i.e., the con-
tribution of the two-dimensional delta function at the origin domi-
nates all the others strung out along the y axis.

5 Matching the Inner and Outer Solution

To study how well the inner and outer solutions, Ḡ and G̃,
approximate the exact Green’s function G, we introduce the inter-
mediate variables x and ŷ in terms of which, by Eqs. �11�, �17�,
and �38�

x̄ = �x, ȳ = �1/2ŷ, x̃ = �−1x/2, y = �−1/2ŷ and � = i1/2ŷ/2�x .

�48�
Assume that G has an expansion of the form
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G�x,y ;�� = G�x,�−1/2ŷ ;�� = �−1/2�G0�x, ŷ� + �−1G1�x, ŷ� + O��−2�� .

�49�
Then

L̂G0 � G0
#### − 4iG0� = 4
�x�

−�

�

�ŷ − 2�1/2n
�

and L̂G1 = − �2G0�
## + G0

##� , �50�

where #=� /�ŷ.

Now consider the inner Green’s function Ḡ�x̄ , ȳ ;�� defined by
Eq. �16�. If we introduce the intermediate variables x and ỹ de-
fined in Eq. �48� and set

Ḡ��x,�1/2ŷ ;�� = �−1/2�Ḡ0�x, ŷ� + �−1Ḡ1�x, ŷ� + O��−2�� , �51�
then, by Eq. �12� and Eq. �50�

L̂Ḡ0 = 4
�x�
−�

�

�ŷ − 2�1/2n
� and L̂Ḡ1 = − 2Ḡ0�
##. �52�

Further, assume that the approximate outer solution G̃�x̃ ,y ;��,
when written in terms of the intermediate variables, has an expan-
sion of the form

G̃��−1x/2,�−1/2ŷ ;�� = �−1/2�G̃0�x, ŷ� + �−1G̃1�x, ŷ� + O��−2�� .

�53�
Then by Eq. �4� and Eq. �18�,

L̂G̃0 = 4
�x�
−�

�

�ŷ − 2�1/2n
� and L̂G̃1 = − G̃0
##. �54�

Comparing Eq. �50� with Eqs. �52� and �54�, we see that G0

= �1/2��Ḡ0+ G̃0� and G1= Ḡ1+ G̃1. Moreover, from Eqs. �13�–�15�
and Eqs. �86� and �87� of �4�, Eqs. �31�, �36�, �37�, and �47�,

Ḡ0�x, ŷ� = G̃0�x, ŷ� =
i3/2


2
�ŷ� + i5/4
��x�

2
� e−�2

�

− � erfc ��

� �̂�x, ŷ�, �ŷ� � �1/2
 . �55�

Thus, G=�−1/2��Ḡ0+�−1Ḡ1+O��−2��+ �G̃0+�−1G̃1+O��−2��	− Ĝ,
where

Ĝ�x, ŷ ;�� � �−1/2
−�

�

�̂�x, ŷ − 2�1/2n
� . �56�

That is,

G�x,y ;�� = Ḡ��x,�y ;�� + G̃��−1x/2,y ;�� + Ĝ�x,�1/2y ;��

+ O��−2� . �57�
In the next section we prove that this formal error estimate is
rigorous.

6 Rigorous Estimate of the Error in the Approximate
Green’s Function

Let R�G− Ḡ− G̃+ Ĝ and L��4 /�y4−4i�2�2 /�x2. Then the

various partial differential equations satisfied by G, Ḡ, G̃, and Ĝ
may be summarized as

L�G,Ḡ,G̃,Ĝ	 + 2�G,Ḡ,0,0	�·· + �G,Ḡ,0,0	�� + �G,0,G̃,0	··

= 4
��x�
−�

�

�y − 2n
� . �58�
By Eqs. �1�, �4�, and �58�
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MR = Ḡ·· + 2G̃�·· + G̃�� − Ĝ·· − 2Ĝ�·· − Ĝ��. �59�

Now assume that all functions have Fourier series expansions of
the form

R = R0 + R1 cos y + 
2

�

Rn cos ny, etc. �60�

Then from Eq. �59�

Rn�� − 2n2Rn� + n4Rn − n2Rn − 4i�2Rn� = − n2Ḡn − 2n2G̃n� + G̃n��

+ n2Ĝn + 2n2Ĝn� − Ĝn��. �61�

Let f���=�−�
� ei�xF�x�dx and F�x�= �1/2
��−�

� e−ix�f���d� de-
note, respectively, the Fourier transform of a function and its in-
verse. Taking the Fourier transform of both sides of Eq. �61�, we
obtain

D��,n;��rn = − n2ḡn + 2n2�2g̃n + �4g̃n + n2ĝn − 2n2�2ĝn − �4ĝn,

�62�

where

D = ��2 + n2�2 − n2 + 4i�2�2. �63�

Taking the Fourier transform of both sides of Eq. �58� with the
right side replaced by the right side of Eq. �4�, we have

D̄��,n;��ḡn = 4�, D̃��,n;��g̃n = 4�, D̂��,n;��ĝn = 4� ,

�64�

where

D̄ = ��2 + n2�2 + 4i�2�2, D̃ = n4 − n2 + 4i�2�2, D̂ = n4 + 4i�2�2.

�65�

If we substitute Eqs. �64� and �65� into Eq. �62�, we find after a bit
of algebra that

rn =
4�n2N

DD̄D̃D̂
, �66�

where

N = �2��2 + 2n2��D + D̂� . �67�

Thus, by the triangle inequality

�Rn� = ��4/
��n2

0

�

e−ix� N

DD̄D̃D̂
d��

� �4/
��n2

0

�
�2��2 + 2n2�

�D̄��D̃�
� 1

�D̂�
+

1

�D��d� . �68�

Because �a+ ib�=�a2+b2� �1/2���a�+ �b�� and n2�n2−1�
� �3/4�n4 if n�2,

�D� � �1/2���4 + 2�2n2 + n2�n2 − 1� + 4�2�2� � �3/8��n4

+ �16/3��2�2� � �3/8��n4 + 4�2�2� . �69�

Moreover,

�D̂� � �1/2��n4 + 4�2�2� . �70�

Thus,

�Rn� � � 56

3

��n2


0

�
�2��2 + 2n2�d�

�D̄��D̃��n4 + 4�2�2�
, n � 2. �71�
Consider the integral
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I1 �

0

�
�4d�

�D̄��D̃��n4 + 4�2�2�
. �72�

Because

�D̄� � �2��2 + 4�2� and �D̃� � 4�2�2,

I1 �
1

4�2n4

0

�
d�

�2 + 4�2 =



16�3n4 , n � 2. �73�

Now consider the integral

I2 �

0

�
�2d�

�D̄��D̃��n4 + 4�2�2�
. �74�

Because

�D̄� � �1/2��n4 + 4�2�2� and

�D̃� � �1/2���3/4�n4 + 4�2�2� � �3/8��n4 + 4�2�2� �75�

if n�2

I2 �
16

3 

0

�
�2d�

�n4 + 4�2�2�3 =
2

3�3n6

0

�
u2du

�1 + u2�3 =



8�3n6 , n � 2.

�76�

Altogether, from Eqs. �71�–�76�, we have

�Rn� �
115

24�2n2 , n � 2. �77�

From Eqs. �4� and �58�, the axisymmetric Fourier components

G0= Ḡ0 and G̃0= Ĝ0, so R0=0. In the residual R1=G1− Ḡ1− G̃1

+ Ĝ1, �G1− G̃1� can be easily computed. Thus

G1 = −
1

1 + 2i�2� e−�p�x�

p
+ ��x��, p = 2i1/2�1 − �i/2��−2�1/2

�78�

and

G̃1 = �i/2��−1�x� �79�

so that

�G1�x� − G̃1�x�� �
1

4�2 +
�x�

4�3 . �80�

Although the last term on the right is not uniformly O��−3�, it is
uniformly small of O��−2� compared to �G �x�� which is O��−1�x��.
1
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The easiest way to obtain an upper bound on �Ĝ1− Ḡ1� is to
consider the inverse Fourier transform. Thus

�Ĝ1�x� − Ḡ1�x�� � �1/
�

0

�

�ĝ1��� − ḡ1����d�

�
4�






0

�
�4 + 2�2

���2 + 1�2 + 4i�2�2��1 + 4i�2�2�
d�

� I3 + I4. �81�

Take �1+4i�2�2��4�2�2 in both I3 and I4. In I3 , I4, respectively,
take

���2 + 1�2 + 4i�2�2� � �1/2��2��2 + 4�2� �82�

and

���2 + 1�2 + 4i�2�2� � �1/2��1 + 4�2�2� . �83�

Thus

I3 �
2


�



0

�
d�

�2 + 4�2 =
1

2�2 and I4 �
4


�



0

�
d�

1 + 4�2�2 =
1

�2 .

�84�
Altogether,

�R�x�� � �R1�x�� + 
2

�

�Rn� �
1

4�2�7 +
�x�
�

+
115

6
�
2

6
− 1��

�
4.84¯

�2 +
�x�
�3 . �85�
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Rayleigh’s Quotient of Linear
Piezoelectricity and Its
Use in the Approximate
Calculation
of the Natural Frequencies
of Piezoelectric Continua
The paper discusses an extension to the linear theory of piezoelectricity of the Rayleigh
quotient used in the analysis of the properties and the approximate calculation of the
natural frequencies of elastic continua. It is shown that for a piezoelectric continuum an
infinite number of equivalent expressions can be obtained which generalize the classical
Rayleigh quotient. The stationarity conditions of any of these quotients under additional
constraints imposed by the Gauss equation of electrostatics and the prescribed natural
electrical boundary condition are shown to result in the complete set of the governing
equations of the free vibration problem of a piezoelectric continuum. The general results
discussed in the paper are illustrated by the approximate calculation of the natural
frequencies of a piezoelectric rod by the Rayleigh–Ritz method. Unlike in the case of
elastic structures, no monotonic convergence of the approximate frequencies is guaran-
teed for a piezoelectric continuum, the property which can be explained using the intro-
duced Rayleigh quotients. �DOI: 10.1115/1.2065667�
1 Introduction
Since its introduction by Lord Rayleigh �1�, the Rayleigh quo-

tient has proved a very valuable concept used in the study of the
properties of the natural frequencies of vibrating multiple degree-
of-freedom and continuous elastic systems. In particular, the Ray-
leigh quotient can be used in the approximate calculation of the
natural frequencies of elastic systems using the Rayleigh–Ritz
method. The properties of the Rayleigh quotient for elastic con-
tinuous systems have been discussed extensively by Courant and
Hilbert �2�, Mikhlin �3�, Strang and Fix �4� and Washizu �5�. It is
known from these studies that the approximate natural frequencies
calculated using the Rayleigh–Ritz method approach the exact
values monotonically and the approximate frequencies are always
higher than the exact values.

This paper will discuss an extension of classical Rayleigh’s
concept to the case of the free vibrations of piezoelectric continua.
The theory of piezoelectricity has been discussed at length by
Cady �6� and Mason �7�. Extensive information about the histori-
cal development of the theory can be found in Ref. �6�. Both Refs.
�6,7� provide solutions of some vibration problems for piezoelec-
tric elements such as rods, beams and plates. Even though the
solutions discussed in Refs. �6,7� have proved very useful in the
practical design of piezoelectric resonators, no full set of coupled
equations of piezoelectricity has been used in these references �no
explicit use has been made of the Gauss equation of electrostat-
ics�. The consistent formulation of the free vibration problem of
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an infinite piezoelectric plate has been considered by Lawson �8�,
followed by more extensive studies by Mindlin and Tiersten. The
derivation of the full set of the governing equations of piezoelec-
tricity and some solutions of coupled electromechanical problems
are discussed by Tiersten �9�.

When studying the vibrations of piezoelectric continua, for
which the mechanical and electrical phenomena are coupled, en-
ergy concepts are of much help. Energy concepts were first used
in the theory of piezoelectricity to define the electromechanical
coupling factor, which was defined by Mason �7� for the case of
forced vibrations excited by an applied voltage as the “square root
of the ratio of the energy stored in mechanical form, for a given
type of displacement, to the total input electrical energy obtained
from the input battery.” The variational formulation of the dy-
namical theory of linear piezoelectricity has been discussed by
Tiersten �9� and Allik and Hughes �10�. Various formulations of
the variational principles of the static theory of piezoelectricity
can be found in �11�. The variational principles of linear dynamic
thermo-piezoelectricity are discussed by Nowacki �12� and He
�13�. Yang and Batra �14� consider an interesting problem of ob-
taining the conservation laws of linear piezoelectricity using the
variational formulation and the Noether theorem.

One particular form of the Rayleigh quotient has been used in
the calculation of the group velocity in functionally graded piezo-
electric plates by Liu and Xi �15� and in cylinders by Han and Liu
�16�. The expression for the Rayleigh quotient was obtained there
using the discretized matrix equations of wave propagation. Two
equivalent expressions of the Rayleigh quotient were derived in
the author’s paper �17� using both the equations of motion of a
piezoelectric continuum and the balance of energy, and they were
then used to verify the natural frequencies and mode shapes of a
rectangular piezoelectric plate. In the present paper it is shown
that an infinite number of equivalent expressions of the Rayleigh
quotient can be obtained in linear piezoelectricity. The stationarity

of these quotients alone is not equivalent to the defining equations
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of the free vibration problem of a piezoelectric continuum. It is
shown in the paper that the governing equations and the respective
natural boundary conditions can be obtained using the stationarity
condition of any of the introduced quotients with the Gauss equa-
tion of electrostatics and the prescribed natural electrical boundary
condition added as constraints. The theoretical results will be il-
lustrated by the approximate calculation of the natural frequencies
of the longitudinal vibrations of a piezoelectric rod by the
Rayleigh–Ritz method and the study of the character of conver-
gence of the frequencies.

2 Extension of Rayleigh’s Quotient to Linear Piezo-
electricity and the Stationarity Principle

2.1 Definition of Rayleigh’s Quotient of Linear
Piezoelectricity. The equations of the free vibration of a piezo-
electric continuum are discussed in full detail by Tiersten �9�.
They consist of the classical equations of free vibrations �1�1 and
the Gauss equation �charge equation� of electrostatics �1�2:

�ij,j = �üi, Di,i = 0. �1�

Here, �ij are the components of the symmetric stress tensor, ui are
the components of the displacement vector, � is the mass density
and Di stand for the components of the electric displacement vec-
tor �a full list of symbols used in the paper is provided in Nomen-
clature�. The spatial partial derivative is denoted by a comma and
the time derivative by a dot. The summation convention is used
throughout the paper and summation over the range 1–3 is implied
for a repeated index. The physical equations of linear piezoelec-
tricity are discussed in Refs. �6,7,9,12�, and have the following
form:

��ij = cijk��k� − ekijEk

Di = eik��k� + �ikEk
� . �2�

Here cijk� are the components of the elastic stiffness tensor, �ik
stand for the dielectric constants and eik� are the piezoelectric
constants that couple the mechanical and electric fields. The re-

sults discussed in the present paper are also valid in the case when

Equation �9� can be written in the following equivalent form:
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material properties change from point to point within the piezo-
electric body and are functions of the spatial coordinates x
= �x1 ,x2 ,x3� �nonhomogeneous case which is of importance, e.g.,
in the study of functionally graded piezoelectric elements�, even
though in order to make formulas more concise this dependence
will not be written explicitly. In Eq. �2� �ij are the components of
the Cauchy strain tensor calculated as:

�ij =
1

2
�ui,j + uj,i� . �3�

In the classical theory of piezoelectricity a quasi-static assumption
is used, which is discussed in more detail in Ref. �9� and which
relies on the fact that the mechanical wavelengths are much
shorter than the lengths of the electromagnetic waves of the same
frequency. According to the quasi-static approximation, the com-
ponents of the electric field vector Ek can be expressed in terms of
the electrostatic potential �:

Ek = − �,k. �4�

The components of the elastic stiffness tensor cijk�, piezoelectric
tensor ekij, and dielectric constants �ik satisfy the following sym-
metry conditions ��9��:

cijk� = cjik� = cij�k = ck�ij, ekij = ekji, �ik = �ki. �5�

Combining Eqs. �1�–�5�, one obtains the following governing
equations of the free vibration problem expressed in terms of dis-
placements and the electrostatic potential �which are discussed in
more detail by Tiersten �9� and Nowacki �12��:

��cijk�uk,� + ekij�,k�,j = �üi

�eik�uk,� − �ik�,k�,i = 0
� in V . �6�

Equations �6� are solved under the appropriate boundary condi-
tions prescribed on the boundary �V, which for the free vibration

problem take the form:
�ui = 0�on �V1� , �ijnj = 0�on �V2� , �V1 � �V2 = � , �V1 � �V2 = �V ,

� = 0�on �V3� , Dini = 0�on �V4� , �V3 � �V4 = � , �V3 � �V4 = �V .
� �7�
Using the language of the calculus of variations, Eqs. �7�1,3 �ui

=0, �=0� define the so-called essential boundary conditions,
whereas the remaining two conditions �7�2,4 are the natural
boundary conditions.

The governing Eqs. �6� with the boundary conditions �7� can be
used to extend to linear piezoelectricity the classical concept of
the Rayleigh quotient. To this end, let us assume that the piezo-
electric continuum undergoes free vibration, in which case:

ui�x,t� = Ui
�n��x�sin��nt + ��, ��x,t� = ��n��x�sin��nt + �� ,

�8�

where � is an arbitrary phase shift. Using Eq. �8� in Eq. �6�1,
multiplying this equation by Ui

�n� and integrating over the volume
of the piezoelectric body one obtains:

�
V

�cijk�Uk,�
�n� + ekij�,k

�n��,jUi
�n�dV = − �n

2�
V

�Ui
�n�Ui

�n�dV . �9�
�
V

��cijk�Uk,�
�n� + ekij�,k

�n��Ui
�n��,jdV −�

V

�cijk�Uk,�
�n� + ekij�,k

�n��Ui,j
�n�dV

= − �n
2�

V

�Ui
�n�Ui

�n�dV . �10�

Using the Gauss theorem of calculus, Eq. �10� is further trans-
formed to the form:

�
�V

�cijk�Uk,�
�n� + ekij�,k

�n��Ui
�n�njd�V −�

V

�cijk�Uk,�
�n� + ekij�,k

�n��Ui,j
�n�dV

= − �n
2�

V

�Ui
�n�Ui

�n�dV . �11�

Making use of boundary conditions �7�1,2 the first term is equal to

zero and expression �11� becomes
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�
V

�cijk�Uk,�
�n� + ekij�,k

�n��Ui,j
�n�dV = �n

2�
V

�Ui
�n�Ui

�n�dV . �12�

Let us now turn to Eq. �6�2, which is multiplied by ��n� and
integrated over the volume of the piezoelectric body. It is impor-
tant to point out that the resulting equation can be multiplied by an
arbitrary real constant f without changing the result. As a conse-
quence, the following equation holds true:

f�
V

�eik�Uk,�
�n� − �ik�,k

�n��,i�
�n�dV = 0. �13�

Proceeding in exactly the same manner as in deriving Eq. �12�,
Eq. �13� can be transformed to the following final form:

f�
V

�eik�Uk,�
�n� − �ik�,k

�n���,i
�n�dV = 0. �14�

Interchanging the summation indices in the second term of Eq.
�12� and subtracting Eq. �14� from Eq. �12�, one arrives at the
following expression for the square of the circular natural fre-
quency:

�n
2 =

�
V

�cijk�Ui,j
�n�Uk,�

�n� + f�ik�,i
�n��,k

�n� + �1 − f�eik��,i
�n�Uk,�

�n��dV

�
V

�Ui
�n�Ui

�n�dV

.

�15�

Equation �15� is the sought generalization to linear piezoelectric-
ity of Rayleigh’s quotient of the free vibration of elastic continua.
Since f is an arbitrary constant, an infinite number of equivalent
expressions of the quotient have been obtained. For f =1 the nu-
merator of Eq. �15� is equal to the overall internal energy �the
strain energy and the energy of the electric field� of the piezoelec-
tric continuum, which is non-negative ��9,12��. Therefore, the
natural frequencies are real.

In the author’s paper �17� expressions equal to quotients �15�
corresponding to the values of the tracing constant f =0 and f =1
have been used to verify the consistency of the natural frequencies
and mode shapes of a three-dimensional piezoelectric plate calcu-
lated by solving the eigenvalue problem. The mode shapes found
by solving the eigenvalue problem were introduced into quotient
�15� and the natural frequencies where calculated in an indepen-
dent way. For both values of the tracing constant used, the same
frequency value was obtained, in perfect agreement with the fre-
quencies calculated as eigenvalue solutions.

In the present paper the expression of the Rayleigh quotient has
been derived using the governing equations. It is also possible to
arrive at the corresponding quotient from the energy balance of a
piezoelectric continuum, using the approach discussed in the au-
thor’s paper �17�.

2.2 The Stationarity Principle. Rayleigh’s quotient is of
much help in studying the properties of the natural frequencies of
lumped and continuous parameter systems. It is well known that
in the case of vibrations of elastic continua the stationarity of
Rayleigh’s quotient for all variations of displacements which sat-
isfy the essential boundary conditions of the problem is equivalent
to solving the eigenvalue free vibration problem. Moreover, Ray-
leigh’s quotient is used in the proof of the monotonic convergence
of the approximate frequencies calculated using the Rayleigh–Ritz
method, as has been discussed by Courant and Hilbert �2� and
Mikhlin �3�.

Unlike in the elastic case, except when f =−1 the stationarity of
quotient �15� alone �for all variations satisfying the essential me-
chanical and electrical boundary conditions� is not equivalent to

solving the free vibration problem of a piezoelectric continuum,
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but it is possible to formulate the stationarity principle by consid-
ering an extended quotient. Assuming that the displacements and
electrostatic potential vary harmonically �ui�x , t�=Ui�x�sin��t
+�� and ��x , t�=��x�sin��t+��� the extended quotient is defined
in the following manner:

�2 =
Num

�
V

�UiUidV

,

Num =�
V

�cijk�Ui,jUk,� + f�ik�,i�,k + �1 − f�eik��,iUk,��dV

− �1 + f��
V

��eik�Uk,� − �ik�,k�,idV

+ �1 + f��
�V

��eik�Uk,� − �ik�,k�nid�V . �16�

For conciseness the dependence of the amplitudes Ui and � on x
is not written explicitly. The first term appearing in the numerator
of Eq. �16� coincides with the numerator of quotient �15�. The
remaining two terms account for the constraints imposed by the
Gauss equation of electrostatics �6�2 and the natural electrical
boundary condition �7�4, respectively. The functions −�1+ f���x�
and �1+ f���x� are the Lagrange multipliers, accounting for the
constraints imposed, respectively, by Eq. �6�2 and the boundary
condition �7�4 �additional details about the constrained variational
principles of mechanics and the Lagrange multiplier method are
provided by Reddy �18��. Using the extended quotient �16� one
can formulate the following:

Stationarity principle:
Given the extended quotient �16�:

�1� The variation of quotient �16� is equal to zero if the dis-
placements and electrostatic potential satisfy the governing
equations of the free vibration problem �6� and the pre-
scribed boundary conditions of the problem �7�.

�2� If the variation of quotient �16� is equal to zero for all
displacements and electrostatic potential which satisfy the
prescribed essential mechanical and electrical boundary
conditions �7�1.3�ui=0,�=0�, the governing Eqs. �6� and
the natural mechanical and electrical boundary conditions
�7�2,4 result from the stationarity condition.

An outline of the proof of this principle is given in the follow-
ing steps:

Integrating by parts the term −�1+ f��V��eik�Uk,�−�ik�,k�,idV
�using the Gauss theorem of calculus in the way discussed in Sec.
2.1�, one transforms quotient �16� to the following equivalent
form:

�2 =

�
V

�cijk�Ui,jUk,� − �ik�,i�,k + 2eik��,iUk,��dV

�
V

�UiUidV

. �17�

It is to be noted that quotient �17� is independent of the arbitrary
constant f .

Using the symmetry conditions �5� the variation of quotient

�17� is found after some calculations to be equal to:
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	�2 = 2

�
V

�cijk�Ui,j + eik��,i�	Uk,�dV +�
V

�eik�Uk,� − �ik�,k�	�,idV − �2�
V

�Ui	UidV

�
V

�UiUidV

. �18�
By integrating the first and the second term of the numerator of
Eq. �18� by parts and using the symmetry conditions �5� one can
show part �1� of the stationarity principle. For part �2�, variation
�18� is equal to zero ��2 is stationary� if:

�
V

�cijk�Ui,j + eik��,i�	Uk,�dV +�
V

�eik�Uk,� − �ik�,k�	�,idV

− �2�
V

�Ui	UidV = 0. �19�

Integrating Eq. �19� by parts and assuming that the admissible
fields satisfy the prescribed essential boundary conditions part �2�
of the stationarity principle is proved.

It should also be pointed out that one can arrive at stationarity
condition �19� in a different way by making use of Hamilton’s
principle discussed in Ref. �9�.

3 Application to the Approximate Calculation of the
Natural Frequencies of a Piezoelectric Rod

In order to demonstrate the application of quotient �16� �or its
equivalent simpler form �17�� to the approximate calculation of
the natural frequencies and the character of their convergence, let
us consider the case of the longitudinal vibrations along the z axis
of a prismatic piezoelectric rod shown in Fig. 1. The case when
the lateral surface of the rod is free from surface tractions and is
not covered by electrodes is considered. Only the z component of
the displacement is restrained at the left end so that the transverse
deformation is not restrained. It is assumed that the rod is poled
along the z axis and is made of material which is transversely
isotropic in the plane perpendicular to the z axis �such material
symmetry holds, e.g., if the rod is made of a piezoelectric ceramic
poled along the z axis�. In this case the physical Eqs. �2� can be
written in the following matrix form:
Fig. 1 The piezoelectric rod under consideration
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�x

�y

�z

�yz

�xz

�xy


 = �
c1111 c1122 c1133 0 0 0

c1122 c1111 c1133 0 0 0

c1133 c1133 c3333 0 0 0

0 0 0 c2323 0 0

0 0 0 0 c2323 0

0 0 0 0 0
1

2
�c1111 − c1122�

�

	

�x

�y

�z

2�yz

2�xz

2�xy


 − �
0 0 e311

0 0 e311

0 0 e333

0 e113 0

e113 0 0

0 0 0

�	Ex

Ey

Ez

 ,

�20�

	Dx

Dy

Dz

 = � 0 0 0 0 e113 0

0 0 0 e113 0 0

e311 e311 e333 0 0 0
�	

�x

�y

�z

2�yz

2�xz

2�xy



+ ��11 0 0

0 �11 0

0 0 �33
�	Ex

Ey

Ez

 .

For a more detailed discussion of different ways of writing the
constitutive equations of linear piezoelectricity �including the so-
called compressed notation� the reader is referred to Refs.
�7,9,12�.

For such a piezoelectric rod and the assumed material symme-
try one can obtain the approximate one-dimensional equations of
longitudinal vibrations from the general three-dimensional formu-
lation, by the direct extension of the corresponding derivation for
an isotropic elastic rod discussed, e.g., by Landau and Lifshitz
�19�. Since the rod lateral surface is free from surface tractions
and is not covered by electrodes, it follows from the boundary
conditions �7�2,4 that �xx=�yy =�yz=�xz=�xy =0 and Dx=Dy =0
on the lateral surface, so that only �z and Dz are nonzero there.
For a slender rod a uniaxial stress state �z�0 can be used inside
the rod, Dz can be taken for the only nonzero component of the
electric displacement vector and assuming that the material prop-
erties are constant or are functions of z alone, �z and Dz are
functions of z only. As a result, the problem of the free vibration
of a ceramic piezoelectric rod with unelectroded lateral surface is
described by the following governing equations and boundary
conditions:

	
�

�z
cK

�u

�z
+ eK

��

�z
� = �

�2u

�t2

� eK
�u

− �K
��� = 0 
 for z � �0,L� . �21�
�z �z �z
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	u = 0 or cK
�u

�z
+ eK

��

�z
= 0

� = 0 or eK
�u

�z
− �K

��

�z
= 0
 for z = 0,L , �22�

where u�z , t� is the displacement along the z axis. The coefficients
appearing in Eqs. �21� and �22� can be functions of z and are
defined using the material coefficients in the constitutive Eqs. �20�
in the following way:

cK = c3333 −
2�c1133�2

c1111 + c1122
, eK = e333 −

2c1133e311

c1111 + c1122
,

�K = �33 +
2�e311�2

c1111 + c1122
. �23�

Equation �21� and �22� have also been obtained by Le �20� from a
general theory of the vibrations of curved piezoelectric rods made
of a material belonging to any symmetry class. The set of approxi-
mate governing equations and the boundary conditions for curved
rods have been derived using the variational-asymptotic method.
For a special case of a straight piezoelectric rod with the lateral
surface not covered by electrodes and made of a material belong-
ing to any symmetry class, Eqs. �21� are given in �20� as a special
form of the general theory. It is pointed out that the constitutive
Eqs. �23� are only valid for the case of transverse isotropy, and for
this case they can be shown to be equivalent to those, obtained
from the energy functional expressed in terms of the stress and
electric displacement vector components �the so-called elastic en-
ergy� discussed in Ref. �20�.

In the analyzed case of longitudinal vibrations of a piezoelectric
rod quotient �16� assumes the form:

�2 =
Num

�
0

L

��U�z��2dz

,

Num =�
0

L

�cK�U��z��2 + f�K����z��2 + �1 − f�eKU��z����z��dz

− �1 + f��
0

L

��z��eKU��z� − �K���z���dz

+ ��1 + f����z��eKU��z� − �K���z����0
L. �24�

The simpler, equivalent expression �17� in the present case is
given by the following formula:

�2 =

�
0

L

�cK�U��z��2 − �K����z��2 + 2eKU��z����z��dz

�
0

L

��U�z��2dz

�25�

and the stationarity condition �19� is given as follows:

− �2�
0

L

�U�z�	U�z�dz +�
0

L

�cKU��z� + eK���z��	U��z�dz

+�
0

L

�eKU��z� − �K���z��	���z�dz = 0. �26�

One can use stationarity condition �26� to calculate the natural
frequencies by the Rayleigh–Ritz method. As an example, a rod
which is mechanically fixed at the left end and free to move at the
right end is considered �u=0 for z=0, cK�u /�z+eK�� /�z=0 for
z=L�. A short-circuit electrical boundary condition is used ��=0

at z=0,L�. The analysis will be done in non-dimensional form and
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the following dimensionless quantities are defined �constant ma-
terial properties will be assumed in all numerical examples�:

z̄ =
z

L
, Ūn�z̄� =

Un�z�
L

, �̄n�z̄� =
�n�z�eK

LcK
, �̄ = �L� �

cK
,

�̄K =
�KcK

�eK�2 . �27�

The displacement and electrostatic potential and their variations
will be approximated using the trigonometric functions which sat-
isfy the prescribed essential boundary conditions of the problem:

Ūn�z̄� = �
i=1

I

ai sin� i�z̄

2
�, 	Ūn�z̄� = �

i�=1

I

	ai� sin� i��z̄

2
� ,

�̄n�z̄� = �
j=1

J

bj sin�j�z̄�, 	�̄n�z̄� = �
j�=1

J

	bj� sin�j��z̄� . �28�

Introducing expressions �28� into the dimensionless form of the
stationarity condition �26� the following algebraic eigenvalue
problem results:

− �̄2M�11� 0

0 0
��a

b
� +  K�11� K�12�

�K�12��T K�22� ��a

b
� = 0 , �29�

where: a= �a1 ,a2 , . . . ,aI�T and b= �b1 ,b2 , . . . ,bJ�T. The elements
of the block matrices appearing in Eq. �29� are calculated as fol-
lows:

Mi�,i
�11� =�

0

1

sin� i��z̄

2
�sin� i�z̄

2
�dz̄ ,

Ki�,i
�11� =

�2i�i

4 �
0

1

cos� i��z̄

2
�cos� i�z̄

2
�dz̄ ,

Kj�,j
�22� = − �2�̄Kj�j�

0

1

cos�j��z̄�cos�j�z̄�dz̄ , �30�

Ki�,j
�12� =

�2i�j

2 �
0

1

cos� i��z̄

2
�cos�j�z̄�dz̄ ,

i,i� = 1 . . . I, j, j� = 1 . . . J .

By eliminating the vector b, eigenvalue problem �29� can be
transformed to the form �which has been used before in the finite
element analysis by Allik and Hughes �10��:

− �̄2M�11�a + �K�11� − K�12��K�22��−1�K�12��T�a = 0 . �31�
To obtain the numerical results the following values of material
constants will be used, which are typical of a piezoelectric ce-
ramic PZT4:

c1111 = 13.2 
 1010� N

m2�, c1122 = 7.1 
 1010� N

m2� ,

c1133 = 7.3 
 1010� N

m2�, c3333 = 11.5 
 1010� N

m2� ,

�32�

e311 = − 4.1� C

m2�, e333 = 14.1� C

m2� ,

�33 = 5.841 
 10−9� F

m
�, � = 7.5 
 103� kg

m3� .

The convergence of the lowest three natural frequencies is shown

in Table 1. An equal number of terms �I=J� have been used in Eq.
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�28� to approximate the displacement and electrostatic potential.
The dots appearing at some locations in the table mean that the
approximate value of the respective circular frequency could not
be calculated with the number of approximating functions used.
The underlined values are the first occurrences when the calcu-
lated frequencies do not change to the number of digits shown, for
two consecutive columns. It is pointed out that unlike in the elas-
tic case, the convergence is not necessarily monotonic as can be
seen from the table. Unlike in the elastic case, the numerator of
quotient �16� or its simplified equivalent form �17� is not positive
definite, and thus the property which is crucial in the proof of the
monotonic convergence in the elastic case is not valid in piezo-
electricity. The difference between the elastic and the piezoelectric
case can also be seen by regarding Eq. �31�. Even though the
algebraic eigenvalue problem described by Eq. �31� has the same
form as in the elastic case it uses the reduced stiffness matrix.

Using the extension of the Rayleigh quotient discussed in the
present paper it is possible to prove monotonic convergence when
the approximating functions apart from the prescribed essential
boundary conditions satisfy the equations of constraints �the elec-
trostatic equation and the natural electrical boundary conditions �if
prescribed��. For this, consider the numerator of quotient �24� in
which the second term disappears when the approximating func-
tions satisfy the electrostatic Eq. �21�2 and the third term is zero
when the approximating functions fulfill either the essential or the
natural electrical boundary condition �whichever is prescribed�.
Since the stationarity condition �26� is independent of the value of
arbitrary constant f used in Eq. �24�, it is convenient to take f
=1. As a result, when the constraint conditions are satisfied, one
obtains the following expression for the quotient:

�2 =

�
0

L

�cK�U��z��2 + �K����z��2�dz

�
0

L

��U�z��2dz

. �33�

It is possible to show in an explicit way that when the admissible
functions fulfill the constraints, expression �33� is indeed valid
irrespective of the value of f used in quotient �24�. In fact, by
integrating the electrostatic Eq. �21�2 one obtains:

eKU��z� − �K���z� = A , �34�

where A is an arbitrary constant of integration. If the electrical
natural boundary condition is prescribed at least at one end of the
rod, then A is equal to zero. In the case of short-circuited ends
��=0 at both ends� studied in the present example, A is nonzero.
Introducing Eq. �34� in Eq. �25� one obtains:

�2 =

�
0

L

�cK�U��z��2 + �K����z��2 + 2A���z��dz

�
0

L

��U�z��2dz

, �35�

which upon integrating the last term in the numerator and using
the boundary condition results in Eq. �33�. The numerator of ex-
pression �33� �which is equal to the internal energy of the piezo-

Table 1 Convergence of the lowest three non-dimensional c
obtained using approximation given by Eq. „28…

I=J 1 2 3 4

�̄1
1.677 1.639 1.638 1.638

�̄2
¯ 6.892 6.141 6.146

�̄3
¯ ¯ 13.988 10.352
electric rod� and the denominator are positive definite for the
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functions satisfying the constraints and thus monotonic conver-
gence results, by the same argument as in the elastic case dis-
cussed in Refs. �2,3�.

In order to illustrate the above discussion, the displacement and
potential are approximated as follows:

Ū�z̄� = �
i=1

I

ai sin�i�z̄� + aI+1z̄, 	Ū�z̄� = �
i�=1

I

	ai� sin�i��z̄� + 	aI+1z̄

�36�

�̄�z̄� =
1

�̄K
�
i=1

I

ai sin�i�z̄�, 	�̄�z̄� =
1

�̄K
�
i�=1

I

	ai� sin�i��z̄� .

These functions satisfy the prescribed essential boundary condi-
tions of zero displacement at the left end and zero potential at both
ends. Moreover, approximations �33� render the dimensionless
form of the electrostatic Eq. �21�2 identity. No natural electrical
boundary condition �boundary constraint� is prescribed in this ex-
ample. It is to be noted that the term aK+1z̄ has been added in the
approximation of displacement so that the approximating func-
tions form a complete set of functions for a fixed-free rod. Upon
introducing series �36� into the dimensionless form of stationarity
condition �26� the following algebraic eigenvalue problem results:

− �̄2Ma + Ka = 0 , �37�
with the components of the mass and stiffness matrices defined as
follows:

Mi�,i =�
0

1

sin�i��z̄�sin�i�z̄�dz̄ ,

Mi�,I+1 =�
0

1

z̄ sin�i��z̄�dz̄, MI+1,i =�
0

1

z̄ sin�i�z̄�dz̄ ,

MI+1,I+1 =�
0

1

z̄2dz̄ ,

Ki�,i = �1 +
1

�̄K
��2i�i�

0

1

cos�i��z̄�cos�i�z̄�dz̄ , �38�

Ki�,I+1 = �1 +
1

�̄K
�i���

0

1

cos�i��z̄�dz̄ = 0,

KI+1,i = �1 +
1

�̄K
�i��

0

1

cos�i�z̄�dz̄ = 0,

KI+1,I+1 = 1,

i,i� = 1 . . . I

The lowest three natural frequencies using approximations �36�
are shown in Table 2, from which one can observe that the con-
vergence is monotonic in this case.

Table 3 includes a summary of results in dimensional form

lar frequencies of a fixed-free rod with short-circuited ends

6 8 10 12 14

1.638 1.638 1.638 1.638 1.638

6.150 6.150 6.151 6.151 6.151
10.376 10.382 10.384 10.386 10.386
ircu
obtained by four different approaches: using the characteristic
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equation, obtained by the Rayleigh-Ritz method with two different
approximations �28� or �36� and calculated by the finite element
method. By solving the eigenvalue problem in a similar way as for
the free vibration of an elastic rod, one obtains for the natural
circular frequencies of the longitudinal vibrations of a piezoelec-
tric rod: �n=kn��cK+eK

2 /�K� /�, where kn are the roots of the
characteristic equation, which in the present case of a fixed-free
rod with electrically short-circuited ends takes the form:

�cK +
eK

2

�K
� knL

tg�knL�
−

eK
2

�K
= 0. �39�

The natural frequencies in �Hz� �fn=�n /2�� are shown in Table 3.
The finite element results were calculated using the coupled-field
capability of the finite element code Ansys®. The results were
obtained by three-dimensional analysis using brick elements. The
rod 0.1 �m� long had a square cross section with sides equal to
0.005 �m� and 3
3 elements were used over the cross section
and 40 elements longitudinally. In the finite element model only
the z component of the displacement was set to zero at the rod
fixed left end so that the transverse deformation was not re-
strained. The three-dimensional analysis used the full form of the
constitutive Eqs. �20� and the material constants not specified in
Eq. �32� were those used in the author’s earlier paper �17�.

Even though, as has been pointed out above, monotonic con-
vergence of frequencies cannot be guaranteed unless the equations
of constraints are satisfied, it can take place in some cases. This is
illustrated in Table 4 where the convergence of non-dimensional
natural frequencies of a fixed-free rod is shown for open-circuit
electrical boundary conditions �Dz=0 at z=0,L�. The results
shown were obtained using the following approximations of the
longitudinal displacement and electrostatic potential:

Ūn�z̄� = �
i=1

I

ai sin� i�z̄

2
�, �̄n�z̄� = �

j=1

J

bj sin� j�z̄

2
� . �40�

It is to be remembered that the electrostatic potential is only de-
termined up to an arbitrary constant �the electric field vector is

Table 2 Convergence of the lowest three non-dimensional c
obtained using approximation given by Eq. „36…

I 1 2 3 4

�̄1
1.643 1.639 1.639 1.638

�̄2
7.044 6.221 6.175 6.162

�̄3
¯ 12.138 10.535 10.445

Table 3 Comparison of the lowest three natural frequencies o
L=0.1 „m…, with short-circuited ends.

Lowest natural frequencies

Solution using the characteristic equation 752
Solution by the Rayleigh–Ritz method
�I=J=10 in Eq. �28��

752

Rayleigh–Ritz solution �I=10 in Eq. �36�� 752
Finite element solution �Ansys®� 752

Table 4 Convergence of the lowest three non-dimensional circu
using approximation given by Eq. „40…

I=J 1 2 3 4

�̄1 2.092 2.092 2.092 2.09

�̄2
¯ 7.167 6.277 6.27

�̄3
¯ ¯ 14.343 10.52
Journal of Applied Mechanics
calculated from Eq. �4� using the derivatives of the electrostatic
potential�. As a result, in the case of open-circuit electrical bound-
ary conditions and unelectroded lateral surface of the rod �electri-
cally “unrestrained” case�, an arbitrary constant can be added to
approximation �40�2 without altering the calculated natural fre-
quencies.

4 Conclusions
The paper has discussed an extension of the Rayleigh quotient

to the linear theory of piezoelectricity. An infinite number of
equivalent expressions of the quotient have been obtained and the
stationarity principle of any of these quotients under the additional
constraints imposed by the Gauss equation of electrostatics and
the prescribed natural electrical boundary condition has been dis-
cussed. The stationarity condition of any of the quotients under
the additional constraints coincides �in the case of free vibrations�
with that resulting from Hamilton’s principle of piezoelectricity
discussed in Ref. �9�. An important difference in the definition of
the Rayleigh quotient compared to the elastic case exists, since for
a piezoelectric continuum the stationarity principle has been for-
mulated as a constrained variational problem. As a consequence
no monotonic convergence of the natural frequencies is guaran-
teed using the Rayleigh–Ritz method, unless the approximating
functions satisfy the equations of constraints imposed by the
Gauss equation of electrostatics and the prescribed electrical natu-
ral boundary condition. The convergence properties of the
Rayleigh–Ritz method have been demonstrated using an example
of the free longitudinal vibrations of a piezoelectric rod. Two dif-
ferent sets of admissible functions have been used, one of which
has satisfied the equation of constraint, and the different character
of convergence using different base functions has been brought
up. For both sets used the final values have been shown to agree
very well with the frequencies calculated from the characteristic
equation and using three-dimensional finite element analysis.

Even though the calculation of the approximate frequencies of a
piezoelectric continuum can be based on Hamilton’s principle dis-
cussed by Tiersten �9�, the advantage of studying the Rayleigh

lar frequencies of a fixed-free rod with short-circuited ends

6 8 10 12 14

1.638 1.368 1.638 1.638 1.638
6.155 6.153 6.152 6.152 6.152

10.404 10.395 10.391 10.390 10.389

ngitudinal vibrations of a piezoelectric fixed-free rod of length

f2 f3

z� 28262 �Hz� 47722 �Hz�
z� 28259 �Hz� 47709 �Hz�

z� 28266 �Hz� 47740 �Hz�
z� 28268 �Hz� 47754 �Hz�

frequencies of a fixed-free rod with open-circuit ends obtained

5 6 8 10

2.092 2.092 2.092 2.092
6.277 6.277 6.277 6.277

10.462 10.462 10.462 10.462
ircu
f lo

f1

6 �H
6 �H

6 �H
6 �H
lar

2
7
9
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quotient follows from the fact that it provides additional insight
into the character of convergence of the approximate frequencies
calculated using the variational method. It has been shown in the
paper that some properties of the elastic case do not carry over to
piezoelectricity and the study of the properties of the Rayleigh
quotient can add to the understanding of the free vibration prob-
lems of piezoelectric continua.

Nomenclature
Di � components of the electric displacement

vector
Ei � components of the electric field vector
K � stiffness matrix
L � length of the rod

M � mass matrix
T � matrix transpose

Ui
�n��x� � displacements of nth vibration mode
Ui�x� � amplitude of vibrations

V � volume of the piezoelectric body
�V � boundary of the piezoelectric body

cijk� � components of the elastic stiffness tensor
cK ,eK ,�K � constants in equations of longitudinal vibra-

tions of a piezoelectric rod
eijk � components of the piezoelectric tensor

f � arbitrary tracing constant
fn � nth natural frequency in �Hz�
kn � nth root of the characteristic equation
n � index numbering the natural frequencies

and eigenmodes
t � time

u�z , t� � displacement of the rod along z axis
ui�x , t� � components of the displacement vector
üi�x , t� � components of the acceleration vector

x= �x1 ,x2 ,x3� � Cartesian coordinates of the points of the
piezoelectric body

��n��x� � electrostatic potential for nth vibration
mode

��x� � amplitude of electrostatic potential
�ij � components of the strain tensor

��x , t� � electrostatic potential
�ij � components of the dielectric tensor
� � arbitrary phase shift
	 � symbol of the variation
196 / Vol. 73, MARCH 2006
�n � nth natural circular frequency
�2 � Rayleigh’s quotient taking into account the

constraints
� � mass density

�ij � components of the stress tensor
� � empty set
� � intersection of sets
� � union of sets

�·̄� � non-dimensional quantities
�·�,i � partial derivative ��·� /�xi

�·��=d /dz � derivative with respect to z �except when
used with indices i� , j��
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Correlation Moment Analysis and
the Time Dependence of
Coherence in Systems Described
by Nonlinear Partial Differential
Equations
The work presented introduces correlation moment analysis. This technique can be em-
ployed to explore the growth of determinism from stochastic initial conditions in physical
systems described by non-linear partial differential equations (PDEs) and is also appli-
cable to wholly deterministic situations. Correlation moment analysis allows the analytic
determination of the time dependence of the spatial moments of the solutions of certain
types of non-linear partial differential equations. These moments provide measures of the
growth of processes defined by the PDE, furthermore the results are obtained without
requiring explicit solution of the PDE. The development is presented via case studies of
the linear diffusion equation and the non-linear Kortweg de-Vries equation which indi-
cate strategies for exploiting the various properties of correlation moments developed in
the text. In addition, a variety of results have been developed which show how various
classes of terms in PDEs affect the structure of a sequence of correlation moment equa-
tions. This allows results to be obtained about the behavior of the PDE solution, in
particular how the presence of certain types of terms affects integral measures of the
solution. It is also demonstrated that correlation moments provide a very simple, natural
approach to determining certain subsets of conserved quantities associated with the
PDEs. �DOI: 10.1115/1.2065687�
1 Introduction
A large class of physical systems have the property of produc-

ing outputs that are less random than their inputs. Putting this
rather loose statement more formally: if the input to such a system
is selected randomly from an appropriate ensemble, then the auto-
correlation function of the output is always wider than that of the
input. This process occurs in both linear and non-linear systems,
however for comparable bandwidths it can be much more pro-
nounced in the non-linear case.

One non-linear example of this, drawn from geology, concerns
the deformation of layered rocks where an initial localized ran-
dom folding rapidly transforms into a highly deterministic propa-
gating structure �1�. This entropy reduction process can lead to
surprising consequences in unexpected areas. Such a case arises in
the simulation of very short term deterministic prediction of ocean
swell waves �2�. Here linearized local approximations are made to
long period weakly non-linear gravity waves �swell waves� using
data gathered of the order of 1 km up-wave of the prediction site
�3,4�. The precision of such predictions can be shown to depend
strongly upon the degree of frequency domain statistical depen-
dence present within the magnitude and phase spectra of the data.

The usual tools for analyzing such effects are auto and cross-
correlation functions. For linear examples these measures can be
readily determined using Wiener’s developments of linear system
theory for stochastic signals. However, hardly surprisingly, there
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are no such readily applicable general tools for non-linear prob-
lems. The direct approach to obtaining quantitative results is via
detailed solutions �usually numerical� of the governing equations.
An alternative is to treat the systems as stochastic partial differ-
ential equations �PDEs� and employ the formulations derived
from the Îto integral �5–7�, or from stochastic Greens function
techniques �8,9�. Both of these two approaches prove to be very
demanding in detailed applications. Furthermore, most systems of
interest are characterized by deterministic PDEs with stochastic
inputs which can be described by band limited �analytic� functions
drawn from some parametrized ensemble.

As a consequence, it was felt worthwhile to develop a tech-
nique that avoided obtaining explicit solutions to the PDEs of
interest. To illustrate the methodology, it is initially applied to the
classical linear partial differential equations which describes dif-
fusion. The technique is then used to examine the non-linear Ko-
rtweg de-Vries �KdV� equation often used as a model system for
solitary waves.

2 Methodology and its Implementation
As stated in the introduction, the initial motivation behind the

work presented here was to address the problem of characterizing
the evolution of determinism, from stochastic initial conditions,
within systems described by partial differential equations. How-
ever, the approach employed means that the technique applies
equally to the exploration of purely deterministic issues.

The methodology employs an integral operator technique to
generate sets of ordinary differential equations �ODEs� from a
defining PDE. The dependent variables in these ODEs are corre-
lation moments, i.e., length scale measures of various orders of
cross-correlation functions of the solution of the original PDE.
Such measures have analogs in the theory of statistical moments.

For non-linear PDEs the system of ODEs is coupled together. For
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the linear case they are uncoupled. In the examples considered the
initial condition becomes the initial form of time dependent spa-
tial correlation functions of various orders.

The presentation is not rigidly formal with the style being that
of the physical sciences rather than a mathematical text. In the
main the proofs are straightforward and thus have been omitted
for clarity of development and for purposes of brevity. The prop-
erties of the correlation moments are explored first and then the
results obtained are applied to the linear diffusion equations and
the non-linear KdV equation. These two explorations demonstrate
how the various properties of correlation moments point to a gen-
eral approach to the application of correlation moment analysis.

A key step in using the correlation moment technique is the
selection of weight functions which when taken in conjunction
with the various conditions prevailing allow the system of ODEs
to be solved for the properties of interest. For linear PDEs that
lead to uncoupled ODEs this process is automatic and involves
only one set of weight functions. For the case of non-linear PDEs
that lead to coupled ODEs, typically a modest number of sets of
weights are required. For non-linear PDEs whose terms involve
products of integer powers of the dependent variable and their
derivatives �as with the KdV equation� the selection of the sets of
weights is again straightforward and is essentially prescribed by
the correlation moment properties of the partial time derivative
term as discussed in Secs. 4.1 and 4.2. This type of PDE is very
common in physical applications.

2.1 Correlation Length Scales. The underlying principle be-
hind the present approach is that the width of the spatial cross-
correlation function, Ru1,u2

�� , t�, between two real-valued func-
tions, u1�� , t� and u2�� , t�, measures the length scale, �w�t�,
�defined in Eq. �8� below� over which u1 and u2 are statistically
dependent in space. Hence �w�t� determines the distance over
which u1 and u2 have a significant degree of interrelationship and
thus can be used in both stochastic and wholly deterministic
situations.

An unlimited number of different length scale measures of
cross-correlation functions can be defined. These moments are
denoted by, �u1,u2,r�t� for the cases, r=0,1 ,2 ,3. . . However it will
be shown that the measure associated with r=2 appears to be the
natural choice. These correlation moments are analogous to those
associated with the moments of a statistical distribution as is evi-
dent from the definition of the rth correlation moment that is
proposed here:

�u1,u2,r�t� =�
−�

�

�rRu1,u2
��,t�d� . �1�

2.1.1 Conditions for the Existence of �u1,u2,r�t� and the Class
of Ru1,u2

�� , t� Functions. As will be demonstrated in Sec. 3, prac-
tical applications of �u1,u2,r�t� typically require the existence of
�u1,u2,r�t� only up to modest values of r. However, it is considered
useful to examine the boundedness of Eq. �1� for all r.

The Wiener Khintchine theorem states that, Ru1,u2
�� , t�, and the

cross-spectral density function, Su1,u2
�� , t�, are a Fourier trans-

form pair, thus formal r-fold differentiation of Su1,u2
�� , t� with

respect to, � gives:

�rSu1,u2
��,t�

��r = �− j�r�
−�

�

�rRu1,u2
��,t�e−j��d� . �2�

Hence, if �rSu1,u2
�� , t� /��r exists at �=0,

�u1,u2,r�t� = jr� �rSu1,u2
��,t�

��r �
�=0

. �3�
Hence the conditions for �u1,u2,r�t� to be defined corresponds to
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the existence of �rSu1,u2
�� , t� /��r at �=0.

Examination of Eq. �3� shows that the correlation moments are
the coefficients of the Taylor series expansion about �=0 of the
cross-power spectral density, Su1,u2

�� , t�. This makes it possible to
write an explicit expression for Su1,u2

�� , t�, in terms of the corre-
lation moments, i.e.:

Su1,u2
��,t� = �

r=0

�
�− j��r

r!
�u1,u2,r�t� . �4�

As well as describing the relationship between �u1,u2,r�t� and the
cross spectrum, Eq. �4� also provides a link to the formalism of
the characteristic function which plays a central role in determin-
ing the statistical moments of u1 and u2.

Alternatively the boundedness of �u1,u2,r�t� can be examined
directly in terms of the definition in Eq. �1�. A sufficient, although
rather excessively demanding, condition for �u1,u2,r�t� to exist as a
function of t is that �rRu1,u2

�� , t��L1�R� for all t. This is satisfied
if Ru1,u2

�� , t� is both bounded and exponentially small for large
values of ���. In particular, for the highest order moment, r, of
interest it will be required that all orders, p, of derivative present
satisfy:

lim
���→�

	�r
�pRu1,u2

��,t�

��p 
 = 0. �5�

For such correlation functions it is both natural and convenient
to require that u1 and u2 are �L2�R�, so that Ru1,u2

�� , t� has the
form �10�:

Ru1,u2
��,t� =�

−�

�

u1�� + �,t�u2��,t�d� . �6�

In this case, Su1,u2
�� , t�= û1�� , t�û2�� , t�, so that Su1,u2

�� , t�
�L1�R� as a function of �. This is different from the definition
adopted for what are commonly described as signals of bounded
power �11�, where

Ru1,u2
��,t� = lim

Z→�

1

2Z�
−Z

Z

u1�� + �,t�u2��,t�d�

Using the definition of Ru1,u2
�� , t� provided by Eq. �6� the cor-

relation moment �u1,u2,r�t� is given by:

�u1,u2,r�t� =�
−�

�

�r�
−�

�

u1�� + �,t�u2��,t�d�d� . �7�

Given the existence of the rth moment, �u1,u2,r�t�, of a correlation
function, Ru1,u2

�� , t�, as introduced in Eq. �1�, the various length
scales of Ru1,u2

�� , t� are sensibly defined by the normalized inte-
gral measure, ��r ,u1 ,u2�, defined by

��r,u1,u2� =

�
−�

�

�rRu1,u2
��,t�d�

�
−�

�

Ru1,u2
��,t�d�

. �8�

Expressed in terms of correlation moments for the functions u1
and u2, this is

��r,u1,u2� =
�u1,u2,r�t�

�u1,u2,0�t�
. �9�

The concept of a length scale over which correlation is signifi-
cant lies at the heart of the treatment of many stochastic processes
such as turbulent flow �12�, and time series analysis �10�. In such

areas a particularly important quantity is the width of the auto-
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correlation function, Ru,u�� , t�, which is often termed the coher-
ence length or coherence time depending upon the context. Ex-
plicit definitions of correlation moments appear to be limited to
the case of auto-correlation functions where they have been used
as a tool in asymptotic analysis �13�.

The auto correlation is an even function of � and thus has a
zero value first moment, consequently the width measure must be
obtained from the non-zero second moment, i.e., as a root mean
square. Thus it is proposed to adopt this as a definition for the
auto-correlation function width, �w�t�, hence:

�w
2 �t� = ��2,u,u� . �10�

2.2 Nature of the Variables u1 and u2. The definition of the
correlation function, Eq. �6�, is deterministic and so it is important
to confirm that it will also prove useful in the stated aim of ex-
ploring the evolution of determinism in PDEs with stochastic ini-
tial conditions. Consider the case where the functions u1 and u2
are members of ensembles which define two random variables.
Then Eq. �6� determines the correlation functions by integration
over � from single members of the ensemble. As the key statistic
required, �w

2 �t�, is a moment of the spatial auto-correlation func-
tion Ru,u�� , t� it is necessary that u1 and u2, must belong to a class
of band limited functions, u, which exhibit spatial ergodicity, at
least up to the second order statistic. Consequently, it is necessary
to determine whether the restrictions already placed upon u1 and
u2 are sufficient to ensure this or if further constraints are
required.

The functions u1 ,u2�L2�R� and so a first order statistic is
independent of the origin about which this is estimated. Thus the
class of functions containing u1 ,u2 is wide sense stationary. Fur-
thermore, a special case of the requirement that Ru1,u2

�0, t���

and lim���→� Ru1,u2
�� , t�→0 ensures that: Ru,u�0, t��� and

lim�→� Ru,u�� , t�→0 and hence u1 and u2 are second order sta-
tionary. These properties are sufficient to satisfy the required de-
gree of ergodicity thus the inherent restrictions imposed upon u1
and u2 are already adequate.

It is important to emphasize that the required stationarity is
spatial, with time, t, serving solely as a parameter. Clearly it is
equally possible to develop an equivalent form of correlation mo-
ment analysis based around time with spatial variables as
parameters.

As will be demonstrated, the present formalism converts PDEs
into ODEs whose dependent variables are correlation functions,
Ru1,u2

�� , t�, thus the initial conditions become initial correlation
functions, Ru1,u2

�� ,0�. Furthermore, it is important to reiterate that
the PDEs considered are not treated as stochastic equations.
Hence the manipulation follows the rules of conventional differ-
ential calculus and not those arising from the Îto integral �5–7�.
For example, the simple linear diffusion equation considered in
Sec. 3 is treated as a conventional PDE, with the solution taking
the physical role of a concentration, and not as in Kolmogorov’s
forward equation yielding a probability density function.

2.3 Further Conditions on Ru1,u2
„� , t… and u1„� , t…, u2„� , t….

Clearly for Eq. �9� to have meaning, we must require that
�u1,u2,0�0 which necessitates that the appropriate correlation
function Ru1,u2

�� , t� has a non-zero integral. The consequences of
this on u1 and u2 can be found by first changing the variable in Eq.
�7� to give:

�u1,u2,r�t� =�
−�

�

u2��,t��
−�

�

�� − ��ru1��,t�d�d� . �11�

This shows that the requirement, �u1,u2,0�0, corresponds to the

condition:

Journal of Applied Mechanics
�
−�

�

u1��,t�d� � 0 and �
−�

�

u2��,t�d� � 0, �12�

which is of course also clear from the spectral form �u1,u2,0�t�
=S�0, t�= û1�0, t�u2�0, t� in Eq. �3�. The condition �u1,u2,0�0 pro-
hibits correlation functions with a zero local mean value over the
region where �Ru1,u2

�� , t�� is significant. The requirement for u1

and u2 to be in L2 already excludes periodic and almost periodic
functions �14,15�, together with specific realizations from sets of
strictly wide band random functions with infinite support. This
additional requirement also disallows L2 functions formed by win-
dowing zero-mean periodic functions over an integer number of
periods.

Equation �11� raises the broader question of the relationship of
the correlation moments to the moments of u1 and u2. Expansion
of Eq. �11� shows that this relationship is:

�u1,u2,r�t� = �
k=0

r

�− 1�k r!

k!�r − k�!�
−�

�

u1��,t��r−kd��
��

−�

�

u2��,t��kd�� . �13�

While the restrictions placed upon u1 ,u2, exclude strictly periodic
and almost periodic functions �12�, as well as trajectories of sta-
tionary random functions, the constraints are weak enough to en-
compass a large range of practical cases of interest. These can be
qualitatively categorized as propagating wave packets with non-
zero mean or pulse-like functions, ensembles of which exhibit
band limited stochastic characteristics. As will become evident
later, such behavior is typical of diffusion equations and non-
linear wave equations such as the well known class of Kortweg
de-Vries equations frequently used to model solitons.

2.4 Correlation Moment Relationships. The route which
will be described here for determining �w�t�, without explicitly
solving what is typically a non-linear partial differential equation
in time and space, is based upon applying the integral defined in
Eq. �7� to the system of interest. The effect of the definite integral,
when viewed as an operator, is to convert the terms in the partial
differential equation defining the system of interest into a set of
ordinary differential equations in time, t. This set relates the mo-
ments, �u1,u2,r�t�, of various orders of cross correlation and the
goal is to use these equations to determine the rms length scale,
�w�t�, of the auto-correlation function of the solution of the PDE.
For purposes of clarity the present treatment involves time, t, and
one spatial dimension, �, however the extension to higher dimen-
sions is immediate.

2.5 Properties of Correlation Moments. The following
properties are used in the development of the correlation moment
technique. They can be derived from Eqs. �6� and �7� using el-
ementary techniques.

2.6 Spatial Derivative Properties.

�pRu1,u2
��,t�

��p = �− 1�p�
−�

�

u1�� + �,t�
�pu2��,t�

��p d� �14�

Given that it is required for all r and p of interest, including p
=0, that the following holds

lim
���→�

	�r
�pRu1,u2

��,t�

��p 
 = 0 �15�
then using integration by parts produces for r� p
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�
−�

�

�r
�pRu1,u2

��,t�

��p d� = 0 �16�

and for r	 p

�
−�

�

�r
�pRu1,u2

��,t�

��p d� = �− 1�p r!

�r − p�!�
−�

�

�r−pRu1,u2
��,t�d�

�17�

with the usual definition of 0!=1. The spatial derivative relation-
ship can be summarized directly in terms of u1 and u2 as follows:

�
−�

� �
−�

�

�ru1�
 + �,t�
�pu2�
,t�

�
p d
d�

�0 r � p

r!

�r − p�!
�u1,u2,r−p�t� r 	 p � �18�

�
−�

� �
−�

�

�ru1�
 − �,t�
�pu2�
,t�

�
p d
d�

�0 r � p

�− 1�r r!

�r − p�!
�u1,u2,r−p�t� r 	 p � �19�

2.7 Symmetry Properties.

Ru1,u2
��,t� = Ru2,u1

�− �,t� �20�

and hence:

�
−�

�

�rRu1,u2
��,t�d� = �− 1�r�

−�

�

�rRu2,u1
��,t�d� . �21�

Furthermore, a rather obvious, but nonetheless useful property is:

�
−�

�

�rRu1,u2
�− �,t�d� = �− 1�r�

−�

�

�rRu1,u2
��,t�d� �22�

If the indices r and p induce opposite symmetry, i.e., one is an
even number while the other is odd, then for the special case of
the auto-correlation function:

�
−�

�

�r�
pRu,u��,t�

��p d� = 0 �23�

Given that Ru1,u2
�� , t� is an even function of � the odd order

moments of the auto-correlation moments are zero, i.e.

�u,u,r�t� = 0, r odd �24�

2.8 Special Cases of u1 and u2. The treatment up to Eq. �24�
applies to correlation moments in general, however in the specific
cases considered here a particular class of correlation moments
will be explored in detail. Writing the PDE solution as u�� , t�, a
wide range of PDEs met in applications contain terms of the form
�pun�� , t� /�tv��p−v. This suggests that the following special case
of u1 and u2 are of interest, i.e.: u1=um�� , t�, and u2
=�pun�� , t� /�tv��p−v. The corresponding rth correlation moment
then has the form:

�u1,u2,r�t� =�
�

�

�r�
−�

�

um�� + �,t�
�pun��,t�
�tv��p−v d�d� �25�
This is evidently related to the form:
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�u1,u2,r�t� =�
−�

�

�r�
−�

�

um�� + �,t�un��,t�d�d� �26�

in which u1=um�� , t� and u2=un�� , t�, suggesting that the follow-
ing extension of the notation will prove useful:

�m,n,r�t� = �um,un,r�t� �27�

Thus the version of Eq. �11� which demonstrates the relationship
of �m,n,r�t� to the moments of u�� , t� is:

�m,n,r�t� =�
−�

�

un��,t��
−�

�

�� − ��rum��,t�d�d� �28�

that evaluates to:

�m,n,r�t� = �
k=0

r

�− 1�k r!

k!�r − k�!�
−�

�

um��,t��r−kd��
−�

�

un��,t��kd�

�29�
The corresponding notation for the correlation functions is:

Rm,n��,t� = Rum,un��,t� �30�

A very useful property involving this special class of u1 and u2
applies to the first order time derivative of Rm,n�� , t�:

�Rm,n��,t�
�t

=�
−�

�

�num�� + �,t�un−1��,t�

+ mun�� − �,t�um−1��,t��
�u��,t�

�t
d� �31�

It is this relationship that indicates the form of the weight func-
tion, i.e., the functions, �num��+� , t�un−1�� , t�+mun��
−� , t�um−1�� , t��, used to multiply the PDE prior to taking corre-
lation moments and the subsequent generation of the system of
ODEs. The spatial derivative forms corresponding to Eqs. �18�
and �19� are:

�
−�

� �
−�

�

�run�
 + �,t�
�pum�
,t�

�
p d
d�

�0 r � p

r!

�r − p�!
�n,m,r−p�t� r 	 p � �32�

�
−�

� �
−�

�

�run�
 − �,t�
�pum�
,t�

�
p d
d�

�0 r � p

�− 1�r r!

�r − p�!
�n,n,r−p�t� r 	 p � �33�

2.9 Zeroth Order Moments. As will be shown subsequently,
Eqs. �31�–�33�, together with the symmetry properties, provide the
basic tool kit for implementing correlation moment analysis. A
particularly useful outcome of this set of equations is that for
PDEs which are first order in time, t, and have no terms that are
explicit functions of u�
 , t� �i.e., all terms contain derivatives of

� then the zeroth order moments, �m,n,0�t� are actually time in-
dependent.

3 Application of the Correlation Moment Technique to
a Linear System

To illustrate the correlation moment methodology, the length
scale �w�t� of the auto-correlation function Ru,u�� , t� will be de-

termined for the classical linear diffusion equation:
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�u��,t�
�t

= D
�2u��,t�

��2 �34�

where D is the diffusion coefficient. Physically the solution u�� , t�
is the concentration of some species and hence u�� , t�	0. The
boundary condition is the standard condition applied to u�� , t�
throughout the work reported on here, i.e., lim���→� u�� , t�=0. At
this point the initial conditions are not specified.

The first goal is to convert Eq. �34� into an ODE in terms of the
correlation moments, �1,1,r�t�, of the auto-correlation functions
R1,1�� , t�, which will eventually enable the calculation of �w�t�.
This is achieved by recognizing that Eq. �31� links the time de-
rivatives of R1,1,r�� , t� and u�� , t�. The lowest order correlations
are obtained for m=1, n=1 thus suggesting multiplying Eq. �34�
through by the weight function, u��+� , t�+u��−� , t�. The corre-
lation moments are then generated by integrating over � and �:

�
−�

�

�r�
−�

�

�u�� + �,t� + u�� − �,t���u��,t�
�t

d�d�

= D�
−�

�

�r�
−�

�

�u�� + �,t� + u�� − �,t��
�2u��,t�

��2 d�d�

�35�

Using the �m,n,r�t� notation from Eq. �27� plus the property de-
fined by Eq. �14� allows Eq. �35� to be rewritten as:

d�1,1,r�t�
dt

= D�
−�

�

�r	 �2R1,1��,t�
��2 +

�2R1,1�− �,t�
��2 
d� . �36�

Invoking Eq. �17� on the right hand side �RHS� of Eq. �36� pro-
duces for r	0:

d�1,1,r�t�
dt

= Dr�r − 1��
−�

�

�r−2�R1,1��,t� + R1,1�− �,t��d�

�37�

Writing right hand side of Eq. �37� in terms of the �m,n,r�t� nota-
tion and employing the symmetry properties produces:

d�1,1,r�t�
dt

= 2r�r − 1�D�1,1,r−2�t� for r 	 2 �38�

and from Eqs. �16� and �36�

d�1,1,r�t�
dt

= 0 for r � 2. �39�

Equations �37�–�39� generate a system of relationships between
the correlation moments of the auto-correlation function R1,1�� , t�.
As it is the second moment which defines the rms width, �w�t�, it
is the first three that are of interest, i.e.

d�1,1,0�t�
dt

= 0 �40�

�which is in any case required by the arguments in Sec. 2.9� and

�1,1,1�t� = 0 �41�

which is in any case necessitated by Eq. �24� that requires:
�1,1,1�t�=0. The relationship for the r=2 moment of the auto-
correlation function R1,1��� is thus:

d�1,1,2�t�
dt

= 4D�1,1,0�t� �42�

Equation �42� provides an explicit relationship for �1,1,2�t� in
terms of �1,1,0 and given that Eq. �39� shows �1,1,0 is time inde-
pendent, then Eq. �42� can be divided by �1,1,0 which produces

from Eq. �40�:
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d
�1,1,2�t�

�1,1,0

dt
= 4D �43�

Equations �8� and �9� give:

�1,1,2�t�
�1,1,0

= �w
2 �t� �44�

thus Eqs. �33� and �44� provide a first order ordinary differential
equation for �w�t� of the form:

d�w
2 �t�
dt

= 4D �45�

Hence the time dependence of the mean square width of the auto-
correlation function is given by:

�w
2 �t� = 4Dt + �w

2 �0� �46�
Note that by Eq. �28�

�w
2 �0� = 2

�
−�

�

u��,0��2d�

�
−�

�

u��,0�d�

− 2

�
−�

�

u��,0��d��2

�
−�

�

u��,0�d��2 �47�

3.1 Initial Conditions. The simplest initial condition is where
u�� ,0� is a continuous approximation to an initial point source of
diffusible material, i.e., u�� ,0��Q0����, where Q0 is the total
quantity of material present. This produces �w

2 �0��0 giving a
length scale characterized by �Dt in agreement with the well
known result for fundamental solution of Eq. �34� �16�.

Given the interest expressed in Sec. 1 over the development of
determinism, an initial condition with random characteristics is
considered next. A simple example which satisfies the requirement
that u�� , t�	0 is a set of N narrow positive pulse-like functions
�continuous in ��, p��−�k ,rp�, of unit area and length scale rp,
which are distributed at random locations, �k, over the interval
−�0����0. Thus: u�� ,0�=�k=1

N p��−�k ,rp�. The pulse length
scale, rp, is chosen such rp�0 so that on the scale, �0, of the
initial condition region the pulses can be approximated by delta
functions.

If the pulses have a Poisson spatial distribution then the auto
correlation of u�� ,0� is well approximated by the sum of a trian-
gular pedestal �of peak value N2 /2�0� spanning −2�0���2�0
and an approximate delta function �the actual width scale is 2rp�
of weight N /2�0 located at �=0. Lee �10�, considers the corre-
sponding result for the limiting case where the pulses are true
delta functions and the domain is infinite. Evaluation of the cor-
relation length scale at t=0 produces a value for the constant
�w

2 �0� in Eq. �46� of �w
2 �0��4�0

2 /3N /1+N /2.

3.2 Large t Behavior. At large times the diffusing substance
will have spread over large distances compared to the length scale,
�0, of the initial condition. Thus the effect of the original detail in
the initial condition region is lost and the diffusing profile be-
comes similar to that arising from a delta function initial condi-
tion. Under such circumstances the full solutions �16�, predict that
the diffusion length scales are again defined by �Dt, which is in
agreement with the form of the large t limit of Eq. �46�.

4 Points Arising From the Linear Example
The linear example demonstrates how to derive a system of

correlation moment equations from a PDE and reproduce the well
known behavior conventionally derived from the explicit solution.
In addition, this case also reveals some general features about the

manner in which the types of terms present in the PDE affect the
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correlation moment equations. As will be discussed in Sec. 4.1,
such relationships also provide information directly about proper-
ties of the correlation functions and of the PDE solutions in cases
where obtaining explicit analytical evaluation of u�� , t� is far more
difficult than in the linear case.

4.1 Effects of Various Orders of Derivative in the PDE on
Zeroth Order Moments. An interesting point arrises as a conse-
quence of Eq. �16� which requires that a spatial derivative of order
p will not contribute terms to the moment relations generated for
r� p. The first order time derivative term does not have this con-
straint and makes a contribution to all such equations. Thus, as
described in Sec. 2.9, a PDE containing time derivatives of only
first order �and without mixed partials� will always lead to a con-
stant zeroth order moment, �u1,u2,0�t�, unless an explicit function
of u�� , t� is present �explicit in the sense of not being linked to �
derivatives�. This is the correlation function equation equivalent
of the well known conservation equation form of a PDE �17�.
Under such conditions �u1,u2,0 yield so-called conserved quantities
for the system, which are also known as the constants of motion.

4.2 Dissipation Terms and Conserved Quantities. A simple
illustration of ease with which the correlation moment technique
reveals the effect of the nature of the PDE terms on the presence
or absence of conserved quantities is given by comparing the re-
sults for the diffusion equation as given in Eq. �34� with the fol-
lowing modified form:

�u��,t�
�t

= D
�2u��,t�

��2 − ku��,t� �48�

The extra term, ku�� , t�, describes a first order reaction which
removes the diffusing species �16�. Consequently, in addition to
the arguments in Secs. 2.9 and 4.1, in this case on physical
grounds u�� , t� should not be conserved as compared to the pre-
vious example of pure diffusion where it is. Thus the presence in
the PDE of this explicit u�� , t�, or in fact any explicit function of
u that does not contain spatial derivatives, can be viewed as a
form of dissipation. Repeating the correlation moment analysis
shows the effect of the ku�� , t� term on the zeroth order moment
equation, which becomes:

d�1,1,0�t�
dt

= − 2k�1,1,0�t� �49�

and thus �1,1,0�t�=�1,1,0�0�e−2kt. Equations �30� yields: �1,1,0�0�
= ��−�

� u�� ,0�d��2, confirming a decay in the total quantity of the
diffusing species, which has the explicit form �−�

� u�� , t�d�

=e−kt�−�
� u�� ,0�d�.

The ability to determine the time dependence of the total quan-
tity of diffusing material without explicitly solving the PDE is just
one of a whole raft of results that potentially arise from the link
between the properties of correlation moment equations to the
structure of the PDE of interest.

5 Application of the Correlation Moment Technique to
a NonLinear System

Having established the correlation moment methodology for the
case of a classical linear PDE, the approach will be applied to a
non-linear PDE.

5.1 The KdV Equation. The application considered is the
non-linear dispersive wave equation usually termed the KdV
equation �17–22�, which has attracted much attention as a soliton
generating system, a useful introduction to which is given in �18�.

The equation is presented here in the form:
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�u��,t�
�t

− 3
�u2��,t�

��
+

�3u��,t�
��3 = 0 �50�

The restrictions imposed here upon u�� , t� naturally induce the
boundary condition: lim���→� u�� , t�=0.

5.2 Correlation Moment Relationships. The procedure il-
lustrated for the linear diffusion equation is now applied to the
non-linear KdV equation. The basic approach is the same, i.e.,
equations relating correlation moments are generated by multiply-
ing the KdV equation by an appropriate weight function in order
to exploit the property in Eq. �31�. The correlation moments are
then generated by application of the definite integral in Eq. �26�.
The main difference that arises in the non-linear case is that, while
Eqs. �38� and �39� are uncoupled in the sense that they link mo-
ments of the same order of correlation function in the linear ex-
ample, the corresponding equations in the non-linear case contain
moments of mixed orders of correlation functions and conse-
quently the ODE system is coupled. In the present example this
requires developing two systems of equations rather than one as in
the linear case and thus employs two different multiplicative
weight functions. The required form for the new weights arrises in
a natural manner as the analysis proceeds.

5.3 First System of Correlation Moment Equations. As
with the linear example motivated by Eq. �31� the PDE is first
multiplied by the factor �u��+� , t�+u��−� , t�� then integral given
by Eq. �26� is applied. This generates an equation that, as will be
seen, relates the various moments of the first order auto-
correlation function, R1,1�� , t� to those of the cross-correlation
function R1,2�t�:

�
−�

�

�r�
−�

�

�u�� + �,t� + u�� − �,t��
�u��,t�

�t
d�d�

− 3�
−�

�

�r�
−�

�

�u�� + �,t� + u�� − �,t��
�u2��,t�

��
d�d�

+�
−�

�

�r�
−�

�

�u�� + �,t� + u�� − �,t��
�3u��,t�

��3 d�d� = 0

�51�

Proceeding as in the linear example and invoking the properties
defined by Eqs. �14� and �23� causes Eq. �51� to become:

d�1,1,r�t�
dt

+ 3�1 + �− 1�r��
−�

�
�R1,2��,t�

��
�d�

− �1 + �− 1�r��
−�

�
�3R1,1��,t�

��3 �rd� = 0 �52�

Evaluating Eq. �52� using Eqs. �14�–�19� produces: For r=0

d�1,1,0�t�
dt

= 0 �53�

Equation �53� is confirmed by the fact that the presence of no
explicit functions of u�
 , t� �as opposed to its spatial derivatives�
ensures that the r=0 moments of all correlation functions,
Rm,n�� , t�, are time independent. For r=1

d�1,1,1�t�
dt

= 0 �54�

which is confirmed by Eq. �24� that requires that the odd moments
of auto-correlations are zero. For r=2

d�1,1,2�t�
= 12�1,2,1�t� �55�
dt

Transactions of the ASME



5.4 Second System of Correlation Moment Equations. The
presence of moments from two different orders of correlation
function require additional systems of equations to explicitly ob-
tain �w�t�. The presence of the 1 ,2 ,r correlation function in Eq.
�55�, together with the property that only the first order time de-
rivative will contribute to the r=0 moment relationship, requires a
further equation system containing the term �R1,2�� , t� /�t. This
can be achieved by replacing the multiplying factor u��+� , t�
+u��−� , t� employed in deriving the first moment equation with
the term u2��+� , t�+2u��−� , t�u�� , t�.

The equivalent to Eq. �35� then becomes:

�
−�

�

�r�
−�

�

�u2�� + �,t� + 2u��,t�u�� − �,t��
�u��,t�

�t
d�d�

− 3�
−�

�

�r�
−�

�

�u2�� + �,t� + 2u��,t�u�� − �,t��
�u2��,t�

��
d�d�

+�
−�

�

�r�
−�

�

�u2�� + �,t� + 2u��,t�u�� − �,t��
�3u��,t�

��3 d�d�

= 0 �56�

It is convenient to recast the last left hand side term in Eq. �56� as:

�
−�

�

�r�
−�

�

2u��,t�u�� − �,t�
�3u��,t�

��3 d�d� =�
−�

�

�r�
−�

�

u�� − �,t�

��1

2

�3u2��,t�
��3 −

3

2

�	 �u��,t�
��


2

��
�d�d� �57�

The factor ���u�� , t� /���2 /�� will be represented by the � deriva-
tive of a function ��� , t� satisfying the same conditions as u�� , t�,
thus:

����,t�
�


= 	 �u��,t�
��


2

�58�

The corresponding cross-correlation function, denoted as,
Ru,��� , t�, is given by:

Ru,���,t� =�
−�

�

u�� + �,t����,t�d� �59�

The associated correlation moments are: �u,�,r�t�. The presence of
this term may appear to be inconvenient but, as will be shown, its
explicit properties are not required in deriving the results of
interest.

Using the above Eq. �56� takes the form:

d�2,1,r�t�
dt

+�
−�

� 	3
�R2,2��,t�

��
+ �− 1�r4

�R1,3��,t�
��

−
�3R2,1��,t�

��3

− �− 1�r�
3R1,2��,t�

��3 − 3�− 1�r�
2Ru,���,t�

��2 
�rd� = 0 �60�

Using Eqs. �14�–�19� to evaluate Eq. �60� produces: For r=0

d�2,1,0

dt
= 0 �61�

which conforms to the requirement that for this type of PDE the
r=0 correlation moments of all correlation functions are time in-
dependent. For r=1

d�2,1,1�t�
dt

= 3�2,2,0 − 4�1,3,0 �62�

Using the symmetry properties of Eqs. �21� and �22� in Eq. �62�

produces:
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�2,1,1�t� = − �1,2,1�t� �63�

and hence Eq. �64� becomes:

d�1,2,1�t�
dt

= − 3�2,2,0 + 4�1,3,0 �64�

Combining Eqs. �55� and �64� gives:

d2�1,1,2�t�
dt2 = − 12�3�2,2,0 − 4�1,3,0� �65�

Finally, the desired length scale ��
2 �t�=�1,1,2�t� /�1,1,0 is formed

producing:

d2��
2 �t�

dt2 = 	48
�1,3,0

�1,1,0
− 36

�2,2,0

�1,1,0

 t2

2
+ �d��

2 �t�
dt

�
t=0

t + ��
2 �0�

�66�

Using the initial conditions for �d��
2 �t� /dt�t=0 from Eq. �55� to-

gether with the definition of ��
2 �0� produces:

�w
2 �t� = 	48

�1,3,0

�1,1,0
− 36

�2,2,0

�1,1,0

 t2

2
+ 12

�1,2,1�0�
�1,1,0

t +
�1,1,2�0�

�1,1,0

�67�

As with the diffusion example by using Eq. �29� the correlation
width in Eq. �67� can be readily expressed in terms of the spatial
moments of various powers of the initial condition u�� ,0�.

5.5 Conditions on �w„t…. To be meaningful as a real physical
measure of the width of the auto-correlation function �w�t� as
given by Eq. �67� must be both real and �w�t�	0. Given that
�1,1,0	0 and �1,1,2	0 these conditions reduce to:

�1,2,1�0� 	 0 �68�

and

�1,3,0 	
3

4
�2,2,0 �69�

Inequalities �68� and �69� limit the class of initial conditions for
which Eq. �67� is valid and crudely speaking suggest that u�� ,0�
should be positive for most �. This is not altogether surprising as
there is a large class of solutions of the KdV equation for which
u�� , t�	0.

5.6 Examples of Initial Conditions. Equation �67� shows
three distinct classes of behavior which in general reflect short,
medium, and large time-scales but for specific initial conditions
may also apply more generally. For small times, or dominance by
the factor �1,1,2�0�, the �w�t� is constant indicating either little
evolution or a linear dispersion characteristic which is common in
KdV solutions, Refs. �18–20�. For moderate times, or �1,1,2�0�
dominance, �w�t� grows as t1/2, i.e., diffusion-like behavior and
for large time, or dominance by the factor �48�1,3,0�0�
−�2,2,0�0�� /�1,1,0�0�, �w�t� grows linearly with time. The more
general quadratic time dependence describes wave packets whose
shape evolves with time. A Gaussian initial condition of the form
u�� ,0�=e−�� / rp�2

satisfies both the fundamental existence require-
ments for the correlation moments and the inequality �68� and
inequality �69�. Specifically inequality �69� evaluates to: 1

�3
	

3
8

and inequality �68� yields: �1,2,1�0�=0. This second result reflects
the fact that if u�� ,0� is an even function of � then for all
m ,n�m,n,r�0�=0 for r odd. For such an initial condition Eq. �67�
produces:

4 3 2 2
�w�t� =�	�3
−

2�6t + rp
 �70�
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5.7 Conserved Quantities. As stated in Secs. 2.9 and 4.1 for
PDEs that are first order in t and have no terms that are explicit
functions of u�
 , t� �i.e., not functions of 
 derivatives� then the
zeroth order correlation moments, �m,n,0 are time independent and
hence defined conserved quantities. This suggests that one inter-
pretation of the correlation moments in general �for finite r� is as
a natural generalization of a conserved quantity. A discussion of
this was initiated in Secs. 4.1 and 4.2.

The two examples considered, i.e., the linear diffusion equation
�without source sink terms� and the KdV equation are both of this
type, reaffirming the well known property that the KdV system
has an infinite number of conserved quantities �17�. However,
without considerable extra labor the present techniques only re-
veal an infinite subset of these constants of motion. Comprehen-
sive investigations of conserved quantities have either relied upon
a specialist technique using a combination of the Muira and Gar-
dener transformations �17,21,22�, or alternatively the very power-
ful Lagrangian action integral method exploiting Noether’s theo-
rem.

6 Correlation Moment Properties of Certain Classes
of Nonlinear Systems

As was made evident in Sec. 5 the key difference between the
correlation moment representations of linear and nonlinear sys-
tems is that in the linear case the associated ODEs contain mo-
ments of the same order of correlation functions while for the
nonlinear case the ODEs generally involve mixed orders of cor-
relation functions. This typically requires the use of two different
weight functions of the type described in Eq. �31�.

However, some potential properties of a certain countably infi-
nite sized class of nonlinear PDEs can be determined using a
single weight function. The reason for the qualification potential
properties is because the results discussed in this section only
hold if the solution u�
 , t� satisfies the conditions previously dis-
cussed for the correlation moment functions to exist up to the
order of interest. For the scope of the systems considered this is a
huge question and such confirmation will inevitably be a very
incremental process.

The first class considered contain generalizations of the source/
sink terms discussed in Sec. 4.3 and is given by:

��u�
,t�� + �
�=1

N

��u��
,t� =
�u�
,t�

�t
�71�

where �� � is a nonlinear operator which is solely a function of
the spatial derivatives.

Applying the methods described in Sec. 3 using the lowest
order weight factor, u�
+� , t�+u�
−� , t�, produces the following
result:

�
�=1

N

���1,�,0�t� =
��1,�,0�t�

�t
�72�

Using Eq. �13� this gives:

�
�=1

N

���u�
,t���u�
,t��� =
��u�
,t��2

�t
�73�

Physically this means that in general the spatial mean of u�
 , t� is
not conserved. For the special case of N=1 Eq. �73� yields the
same form as for the linear diffusion equation

�u�
,t��2 = �u�
,0��2e2�1t �74�

The second class of system considered explicitly excludes the

generalized source/sink terms and has the form
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�u�
,t�
�


+ �
�=3

N

��
��us��
,t�

�
�
= �

�u�
,t�
�t

�75�

Again using the lowest order weight function it can be shown that
all such systems have the property that both �1,1,0�t� and �1,1,2�t�
are constants. The first property is only moderately interesting
stating that the spatial mean of u�
 , t� is conserved. However, the
second is the rather surprising result that the width of the corre-
lation function is also conserved, i.e., the length scale of statistical
dependence in u�
 , t� does not change with time. This result oc-
curs because of the effect of Eq. �16� and means that for systems
of this kind the coherence length scale is solely controlled by the
first spatial derivative.

If the lower index limit in Eq. �75� is reduced from �=3 to �
=2, the properties of the system change. To discover the changes
it is necessary to employ two sets of weight functions. Using
u�
+� , t�+u�
−� , t� generates:

��1,1,2�t�
�t

= − 4�1�1,1,1 + 2�2�1,s,0 �76�

in which, according to Eq. �24�, �1,1,1=0. Using the weight
su�
+� , t�us−1�
 , t�+us�
 , t� produces

��1,s,0�t�
�t

= 0 �77�

The result of Eqs. �6� and �7� is that:

��1,1,2�t�
�t

= constant �78�

and hence in general the correlation moment has the linear time
dependence: �1,1,2�t�=Const1+ t�Const2. Thus physically the co-
herence length scale is essentially constant for a short time then
tends to grow as �t at large t, i.e., the same statistical behavior as
a diffusion system.

While the results derived in this section appear to be making
remarkably broad statements about very general classes of nonlin-
ear PDEs, it must be reemphasized that the findings are only valid
for the cases where it can be shown that the conditions for the
existence of the correlation moments as given in Sec. 2 are satis-
fied.

7 Conclusions
The work presented introduces the correlation moment tech-

nique as a method for gaining insight into the time evolution of
the width of the auto-correlation function of the solutions of cer-
tain PDEs. This approach does not require the explicit solution of
the equation system. For purely deterministic cases this provides
information on the time dependence of fundamental length scales
and for stochastic initial conditions it characterizes the evolution
of statistical dependence within the solution.

The expressions for the growth of deterministic or statistical
dependence can be obtained in terms of the conserved quantities
and hence the initial conditions. This is achieved by exploiting the
various properties of correlation moments that have been deter-
mined here.

In addition, a variety of results have been developed which
show how various classes of terms in PDEs affect the structure of
a sequence of correlation moment equations. This allows results to
be obtained about the behavior of the PDE solution, in particular
how the presence of certain types of terms affect integral mea-
sures of the solution. It is also shown how correlation moments
provide a very simple, natural approach, to determining certain

subsets of conserved quantities associated with the PDEs.
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Interaction of a Screw Dislocation
With an Arbitrary Shaped Elastic
Inhomogeneity
In this paper, the interaction between a screw dislocation and an arbitrary shaped elastic
inhomogeneity with different material properties than the surrounding matrix is investi-
gated. The exact solution to this problem is derived by means of complex variable meth-
ods and Faber series expansion. Specifically, the conformal mapping function maps the
matrix region surrounding the inhomogeneity onto the outside of a unit circle in the
image plane, while the analytic function defined in the elastic inhomogeneity is expressed
in terms of a Faber series expansion. Once the series form solution is obtained, the stress
fields due to the screw dislocation can be obtained. Also the image force on the screw
dislocation due to its interaction with the elastic inhomogeneity is derived. Three ex-
amples of a screw dislocation interacting with (1) an equilateral triangular inhomoge-
neity, (2) a square inhomogeneity, and (3) a five-pointed star-shaped inhomogeneity are
presented to illustrate how the stiffness of the triangular, square or five-pointed star-
shaped inhomogeneity can influence the mobility of the screw dislocation.
�DOI: 10.1115/1.2073307�
1 Introduction
The interaction of dislocations with elastic inhomogeneities is

an important topic in studying the strengthening and hardening
mechanisms of materials. To simplify the analysis, most of the
researchers assumed that the inhomoneneity is of circular shape
�see, for example, �1,2��, is of elliptical shape �see �3–5� for de-
tails�, or the inhomogeneity is rigid �or a cavity� with its shear
modulus infinite �or zero� �see, for example, �6,7��.

Despite extensive study of inclusions with simple shapes, little
effort has been devoted to inclusions of arbitrary shape. For ex-
ample, Tsukrov and Novak �8� used a computational procedure to
calculate the contribution of arbitrary shaped inclusions to the
effective moduli of two-dimensional elastic solids. In �9,10�, Ru
developed a method for evaluating the stress fields of an arbitrary
shaped inclusion embedded in full and half planes of isotropic and
anisotropic elasticity, respectively. The key limitation of Ru’s
method is based on the assumption that elastic mismatch between
dissimilar materials is negligible. Recently, the Faber series
method �11� has been employed to study the problem of an arbi-
trary shaped inclusion perfectly bonded to the surrounding matrix.
In particular, Gao and Noda �12� use the Faber series method to
investigate the anti-plane problem of an arbitrary shaped piezo-
electric inclusion embedded in an infinite piezoelectric medium.

The focus of the current paper is to investigate, in detail, the
interaction problem of a screw dislocation with an arbitrary
shaped elastic inhomogeneity. The main feature of this work is
that the material properties of the inclusion and the surrounding
matrix are different. The solution, in series form, is obtained by
means of complex variable methods and Faber series expansion. A
rigid inclusion or a cavity can be treated as a special case by
letting the shear modulus of the inhomogeneity become infinite or
zero, respectively. Once the solution is obtained, the stress fields
in the inhomogeneity and in the matrix can be derived. In addi-
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tion, the image force on the screw dislocation due to its interaction
with the elastic inhomogeneity is also derived. In fact, we calcu-
late the image force on the screw dislocation interacting with �1�
an equilateral triangular inhomogeneity, �2� a square inhomogene-
ity, and �3� a five-pointed star-shaped inhomogeneity. It is found
that the stiffness of the inhomogeneity has a significant influence
on the nature of the image force �either attractive or repulsive� and
also on the magnitude of the image force.

2 Basic Formulations
As shown in Fig. 1, we consider a domain in R2, infinite in

extent, containing an arbitrary shaped elastic inhomogeneity with
elastic properties different from those of the surrounding matrix.
The linearly elastic materials occupying the inhomogeneity and
matrix are assumed to be homogeneous and isotropic with shear
moduli �1 and �2, respectively. We represent the matrix by the
domain S2 and assume that the inhomogeneity occupies the region
S1. The interface L separating the inhomogeneity and the sur-
rounding matrix is assumed to be perfect �i.e., both the displace-
ment and traction vectors are continuous across L�. In addition, a
screw dislocation with Burgers vector b is located at the point z
=z0 in the matrix.

For the anti-plane problem discussed in this paper, the displace-
ment u3, the stresses �31,�32, and resultant the force R3 along any
arc can be expressed in terms of a single analytic function f�z� as

u3 = Im�f�z�� ,

�32 + i�31 = �f��z� , �1�

R3 = − �Re�f�z�� .

We consider the following conformal mapping function

z = m��� = R�� + �
n=1

+�

mn� −n	 , �2�

which maps the region occupied by the matrix to 
�
�1 in the
mapped � plane.

Let the analytic functions in the inhomogeneity and the matrix
be denoted by f1�z� and f2�z�, respectively. For convenience, we

write f i�z�= f i�m����= f i���.
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3 Determination of f1„z… and f2„�…

The analytic function f1�z�, defined within the inhomogeneity,
can be expanded as a Faber series and expressed as follows:

f1�z� = �
n=1

+�

anPn�z� , �3�

where an�n=1,2 ,3 , ¯ , +�� are unknown complex constants to
be determined, and Pk�z� is the kth degree Faber polynomial
which can be explicitly expressed as

Pk�z� = Pk„m���… = �k + �
n=1

+�

�k,n� −n�k = 1,2,3, . . . , + �� , �4�

where the coefficients �k,n are determined by the following recur-
rence relations �12�

�1,n = mn,
�5�

�k+1,n = mk+n + �k,n+1 + �
i=1

n

mn−i�k,i,

− �
i=1

k

mk−i�i,n �k,n = 1,2,3, . . . , + �� .

Hence, f1��� can be expressed as follows:

f1��� = �
n=1

+� �an�n + ��
k=1

+�

ak�k,n	� −n� . �6�

The continuity condition of displacement and traction across
the interface 
�
=1 can be expressed as

f2
−��� − f̄2

+�1/�� = f1
+��� − f̄1

−�1/�� ,

f2
−��� + f̄2

+�1/�� = ��f1
+��� + f̄1

−�1/���,�
�
 = 1� , �7�

where �=�1 /�2.

Fig. 1 A screw dislocation interaction with an arbitrarily
shaped inhomogeneity
Inserting �6� into �7� yields the following:
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f2
−��� − f̄2

+�1/�� = �
n=1

+� ��an − �
k=1

+�

āk�̄k,n	�n

− �ān − �
k=1

+�

ak�k,n	� −n� ,

�8�

f2
−��� + f̄2

+�1/�� = ��
n=1

+� ��an + �
k=1

+�

āk�̄k,n	�n

+ �ān + �
k=1

+�

ak�k,n	� −n�, �
�
 = 1� .

Applying Liouville’s theorem, we obtain two expressions for
f2���

f2��� = − �
n=1

+� �ān − �
k=1

+�

ak�k,n	� −n +
b

2�
ln

� − 1/�̄0

�
+

b

2�
ln�� − �0� ,

f2��� = ��
n=1

+� �ān + �
k=1

+�

ak�k,n	� −n −
b

2�
ln

� − 1/�̄0

�
+

b

2�
ln��

− �0�, �
�
 � 1� , �9�

where �=�0=m−1�z0��
�0
�1� is the location of the screw dislo-
cation.

In view of the fact that the two expressions for f2��� must be
compatible with each other, then we arrive at the following set of
algebraic equations:

�� + 1�an + �� − 1��
k=1

+�

�̄k,nāk = −
b�0

−n

n�
�n = 1,2,3,¼, + �� .

�10�

Truncating the above infinite system of linear algebraic equations
at a sufficiently large integer N, we obtain

Ax + Bx̄ = f , �11�

where

A = �� + 1�diag�1 1 ¯ 1� ,
�12a�

Fig. 2 The equilateral triangle described by Eq. „18…
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B = �� − 1�
�̄1,1 �̄2,1 ¯ �̄N,1

�̄1,2 �̄2,2 ¯ �̄N,2

] ] � ]

�̄1,N �̄2,N ¯ �̄N,N

� ,

x = 
a1

a2

�
aN

�, f = −
b

�
1

�0

1

2�0
2

�
1

N�0
N

� . �12b�

The above set of algebraic equations can be resolved to give

�x

x̄
� = �A B

B̄ A �−1� f

f̄
� . �13�

Remark: The two analytic functions f1�z� and f2��� have now

Fig. 3 The normalized image force on a screw dislocation lo-
cated on the positive x axis interacting with the equilateral tri-
angular inhomogeneity
been uniquely determined.

where Fx and Fy are respectively the x and y components of the mat
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4 Stress Field
Once the analytic function f1�z� for the inhomogeneity is ob-

tained, the stress field within the arbitrary shaped inhomogeneity
can be expressed as

�32 + i�31 = �1�
n=1

+�

anPn��z� . �14�

Particularly, the stresses within the inhomogeneity are distributed
along the interface L as follows:

�32 + i�31 = �1

�
n=1

+�

n�an�n−1 − ��
k=1

+�

ak�k,n	� −n−1�
R�1 − �

n=1

+�

mnn� −n−1	 �
�
 = 1� .

�15�

Similarly, once the analytic function f2��� for the matrix is ob-

Fig. 4 The square described by Eq. „20…
tained, the stresses in the matrix are calculated to be
�32 + i�31 = �2

�
n=1

+�

n�ān − �
k=1

+�

ak�k,n	� −n−1 + �b/2����1/���̄0� − 1�� + �1/�� − �0���

R�1 − �
n=1

+�

mnn� −n−1	 ,�
�
 � 1� . �16�

5 Image Force on the Screw Dislocation
The image force acting on the screw dislocation due to its interaction with the arbitrary shaped elastic inhomogeneity is derived and

takes the following form:

Fx − iFy =

�2b��
n=1

+�

n�ān − �
k=1

+�

ak�k,n	�0
−n−1 − ��b/4����

n=1

+�

mnn�n + 1��0
−n−2/�1 − �

n=1

+�

mnn�0
−n−1��� + ��b/2���1/�0�
�0
2 − 1����

R�1 − �
n=1

+�

mnn�0
−n−1	 �
�0
�1�,

�17�
erial force.
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6 Examples

6.1 An Equilateral Triangular Inhomogeneity. First, let us consider a screw dislocation interacting with an equilateral triangular
inhomogeneity. The specific conformal mapping function is taken to be the following �see, for example, �13,14��:

z = m��� = R�� +
1

3
� −2 +

1

45
� −5 + ¯ +

�− 1�k

�1 − 3k�
C2/3

k�1−3k + ¯	 �R � 0� . �18�

In this paper, the above mapping function is truncated at k=50 and we take N=150 to ensure that the obtained results are sufficiently
accurate. The equilateral triangle described by the above mapping function is illustrated in Fig. 2. The calculated coefficients
�k,n �k ,n=1,2 ,3 ,¼ ,10� are given by

��� = 
0 0.3333 0 0 0.0222 0 0 0.0062 0 0

0.6667 0 0 0.1556 0 0 0.0272 0 0 0.0098

0 0 0.4000 0 0 0.1000 0 0 0.0291 0

0 0.3111 0 0 0.2321 0 0 0.0719 0 0

0.1111 0 0 0.2901 0 0 0.1497 0 0 0.0567

0 0 0.2000 0 0 0.2182 0 0 0.1055 0

0 0.0951 0 0 0.2096 0 0 0.1599 0 0

0.0494 0 0 0.1437 0 0 0.1827 0 0 0.1199

0 0 0.0873 0 0 0.1582 0 0 0.1493 0

0 0.0492 0 0 0.1135 0 0 0.1499 0 0

� . �19�
Figure 3 demonstrates the normalized image force, F*

=RFx /�2b2, on the screw dislocation which is located on the posi-
tive x axis in the matrix. It is observed that the screw dislocation
will be attracted to the triangular inhomogeneity �i.e. Fx	0� when
the inhomogeneity is softer than the surrounding matrix ��	1�
and the magnitude of the attractive force will be higher when
� ��	1� becomes smaller and the dislocation is closer to the tip
of the inhomogeneity. On the other hand, the triangular inhomo-
geneity will repel the screw dislocation �i.e. Fx�0� when the
inhomogeneity is stiffer than the surrounding matrix ���1� and
the magnitude of the repulsive force will be higher when ���
�1� becomes larger and the dislocation is closer to the tip of the

inhomogeneity.

p=1 k=0
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6.2 A Square Inhomogeneity. Next, we address a screw dis-
location interacting with a square inhomogeneity. The specific
conformal mapping function is taken to be the following �see, for
example, �13,14��

z = m��� = R�� +
1

6
� −3 +

1

57
� −7 + ¯ +

�− 1�k

�1 − 4k�
C1/2

k�1−4k

+ ¯� �R � 0� . �20�

The above mapping function is truncated at k=50 and we take
N=200. The square described by the above mapping function is
illustrated in Fig. 4. The calculated coefficients �k,n �k ,n

=1,2 ,3 ,¼ ,10� are given by
��� = 
0 0 0.1667 0 0 0 0.0179 0 0 0

0 0.3333 0 0 0 0.0635 0 0 0 0.0173

0.5000 0 0 0 0.1369 0 0 0 0.0395 0

0 0 0 0.2381 0 0 0 0.0770 0 0

0 0 0.2282 0 0 0 0.1193 0 0 0

0 0.1905 0 0 0 0.1525 0 0 0 0.0728

0.1250 0 0 0 0.1671 0 0 0 0.0977 0

0 0 0 0.1539 0 0 0 0.1175 0 0

0 0 0.1186 0 0 0 0.1256 0 0 0

0 0.0866 0 0 0 0.1214 0 0 0 0.0943

� . �21�

Figure 5 demonstrates the normalized image force, F*=RFx /�2b2, on the screw dislocation located on the positive x axis in the matrix.
The phenomenon observed for the square inhomogeneity is identical to that for an equilateral triangular inhomogeneity.

6.3 A Five-Pointed Star-Shaped Inhomogeneity. Finally, we investigate a screw dislocation interacting with a five-pointed
star-shaped inhomogeneity. The specific conformal mapping function is taken to be the following �13�:

z = m��� = R�� + �
+� ��p

�− 1�kC4/5
kC−2/5

p−k	 1

1 − 5p
�1−5p� �R � 0� . �22�
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Notice that there is a misprint in Eq. �27� of Ref. �13�. “2 /n” should read “−2/n.” The above mapping function is truncated at p
=500 and we take N=250. The five-pointed star described by the mapping function Eq. �22� is illustrated in Fig. 6. The calculated
coefficients �k,n �k ,n=1,2 ,3 ,¼ ,10� are given by

��� = 
0 0 0 0.3 0 0 0 0 − 0.0578 0

0 0 0.6 0 0 0 0 − 0.0256 0 0

0 0.9 0 0 0 0 0.0967 0 0 0

1.2 0 0 0 0 0.3089 0 0 0 0

0 0 0 0 0.6111 0 0 0 0 0.0833

0 0 0 0.4633 0 0 0 0 0.3160 0

0 0 0.2256 0 0 0 0 0.4947 0 0

0 − 0.1022 0 0 0 0 0.5653 0 0 0

− 0.52 0 0 0 0 0.4740 0 0 0 0

0 0 0 0 0.1667 0 0 0 0 0.4130

� . �23�

Fig. 5 The normalized image force on a screw dislocation located on the positive x
axis interacting with the square inhomogeneity

Fig. 7 The normalized image force on a screw dislocation lo-
cated on the negative x axis interacting with the five-pointed
Fig. 6 The five-pointed star described by Eq. „22…
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star-shaped inhomogeneity
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Figure 7 demonstrates the normalized image force, F*

=RFx /�2b2, on the screw dislocation located on the negative x
axis in the matrix. By noting that the dislocation will be attracted
to the inhomogeneity when Fx�0, and the dislocation will be
repelled from the inhomogeneity when Fx	0, then the phenom-
enon observed here is similar to that observed for an equilateral
triangular or a square inhomogeneity, respectively.

7 Conclusions
In this paper, we present the problem of a screw dislocation

interacting with an arbitrary shaped elastic inhomogeneity. The
key feature of this work is that the material properties of the
inhomogeneity and the surrounding matrix are different. Through
the introduction of a conformal mapping function, the region oc-
cupied by the matrix can be mapped to the outside of a unit circle
in the �-plane. In addition, the analytic function defined in the
elastic inhomogeneity is expanded into a Faber series. Once the
series form solution is obtained, the stress fields due to the screw
dislocation can be obtained. Also the image force on the screw
dislocation due to its interaction with the elastic inhomogeneity is
derived. Several examples of practical importance are presented to
demonstrate the feasibility of the obtained solution and to illus-
trate the influence of the stiffness of the elastic inhomogeneity on
the mobility of the screw dislocation. The case where the screw
dislocation lies in the arbitrary shaped elastic inhomogeneity can
also be similarly addressed. As well, the obtained solution can be
easily applied to investigate a matrix crack interacting with an
arbitrary shaped elastic inhomogeneity.
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Energetics of Epitaxial Island
Arrangements on Substrate
Mesas
Self-assembly of strained epitaxial deposits (islands) grown on a substrate is a promising
route to fabricate nanostructures of significance for electronic and optoelectronic de-
vices. The challenge is to achieve specific island arrangements that are required for
device functionality and high performance. This article investigates growth on a topo-
graphically patterned substrate as a means to control the arrangement of islands. By
taking free energy to consist of elastic energy and surface energy, minimum energy
configurations are calculated for islands on a raised substrate mesa. Configurations of
one, two, and three islands at different positions on the mesa are considered to determine
their relative energies as a function of mesa size, island size, mismatch strain between the
island and substrate materials, surface energy, and elastic moduli. Insight is offered on
the mechanisms responsible for certain physical observations such as a transition from
the formation of multiple islands to a single island as mesa size is reduced.

�DOI: 10.1115/1.2073327�
1 Introduction
Spontaneous self-assembly of nanostructures in lattice-

mismatched epitaxial systems has been a problem of long-
standing interest for fabricating advanced electronic and optical
devices. The idea is to deposit a material onto a substrate surface
and allow inherent physical processes to control formation of the
deposited material into nanostructures, such as mounds, lines, or
other simple units that are the building-blocks of a particular de-
vice. The spontaneous formation of nanostructures in these sys-
tems is a well-known phenomenon that occurs during deposition,
however the challenge is to produce units of a particular size that
are organized in a predefined configuration. For example, a device
might require mounds of uniform size arranged in a regular two-
dimensional array or in one-dimensional lines or corrals. A
method under current investigation for guiding the organization of
epitaxial nanostructures is growth on topographically patterned
substrates. Relatively large substrate features formed, for ex-
ample, by lithography and ion-etching act as templates for posi-
tioning smaller nanoscale structures.

Experiments have demonstrated that patterned substrates offer
some control over the sites where islands �mounds� tend to form.
Kitajima et al. �1� deposited Ge on Si�001� substrates patterned
with square mesa-like structures. Ge is lattice-mismatched with
respect to Si, which under the constraint of epitaxy produces a
residual misfit strain in the system. Kitajima et al. �1� found that
for relatively wide mesas, islands tend to form at random loca-
tions with a notable concentration towards the edges of the mesa.
For smaller mesas, islands formed only at the corners and for yet
smaller mesas a single island was observed at the center. Jin et al.
�2� also observed island formation at the corners of a square mesa
in the same system, however with continued growth they found
that another island would form at the center of the mesa. Similar
observations were reported by Lee et al. �3�, however their mesas
were circular in shape rather than square. Islands of fairly uniform
size and spacing where found to form around the periphery of the

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received February 2, 2005; final manu-
script received May 14, 2005. Review conducted by Z. Suo. Discussion on the paper
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Applied
Mechanics, Department of Mechanical and Environmental Engineering, University
of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted
until four months after final publication in the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
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mesa and in some cases islands were also found to form in the
center. These experiments demonstrate that a relatively large scale
topography can guide the organization of smaller scale features,
however they offer limited insight into the mechanisms that gov-
ern this spontaneous organization. Conventional wisdom is that
islands will tend to form at sites of low free energy, as islands near
the edge of a mesa tend to be most favorable because the rela-
tively high compliance at the boundary can act to relax misfit
strain and thereby reduce the strain energy of the system. How-
ever, recent experiments by Zhong et al. �4,5� suggest that ener-
getics alone does not control organization. Kinetic phenomena
might have a large influence on organization, as different growth
rates often produce different configurations in the same system.

The current article investigates island formation atop mesa
structures to determine if observed organized configurations �1–3�
are likely energetic or kinetic in origin. Free energies are calcu-
lated to assess the relative favorability of different morphologies.
For analytical convenience, the system is treated as two-
dimensional �plane strain� where a morphology is characterized
by the number of islands atop the mesa, island positions, and the
shape of individual islands. Island shapes are restricted to circular
arcs and characterized by volume and height-to-width aspect ratio.
A similar assumption was made by Johnson and Freund �6� to
study the energetics of islands on a flat substrate. The specific
question is whether islands are most likely to form �a� at the edges
of the mesa, �b� in the center, or �c� as a combination with islands
at the both the edges and at the center. Kitajima et al. �1� found
that each of these configurations can occur depending on the di-
ameter of the mesa and Jin et al. �2� found that either �a� or �c� can
occur depending on the amount of material deposited. Free ener-
gies of the different configurations with a given volume of depos-
ited material are compared to find the configuration of minimum
free energy and determine if it changes as mesa width is decreased
or as the amount of material deposited is increased.

The analysis is based on the assumption that the system free
energy consists of surface free energy and strain energy, which
arises from a lattice mismatch between the island and substrate
materials. The island-substrate interface is commensurate and free
of defects; therefore its free energy is considered to be negligible.
The same assumptions were used in previous analyses of island
formation on a flat substrate �6–8�.

It is useful to review the case of islands on a flat substrate, as
similar mechanisms guide island positioning on patterned sub-

strates. For an island of fixed volume, the total strain energy tends
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to be lower for a high aspect ratio island than a low aspect ratio
one. This is because a higher aspect ratio is more effective at
relaxing mismatch strain in the island and thereby decreases strain
energy in the system. At the same time, surface area and therefore
surface energy increases as an island increases in aspect ratio.
Strain energy and surface energy compete to determine the equi-
librium shape of an island. Surface energy is decreased when two
islands coalesce to form a single large island. It is found that the
total free energy is reduced when two islands on a flat substrate
coalesce �8�; however, there is evidence that elastic interactions
between islands might impede the kinetic process of coalescence
�9–11�.

The nature of the competition between strain energy and sur-
face energy implies how substrate patterning might affect island
morphology. For example, consider two configurations: �a� two
small islands at the edge of a mesa versus �b� one large island at
the center of the mesa. A tendency to minimize strain energy
would favor configuration �a�, as islands at the edges would be
more effective in relaxing mismatch strain—the edges are more
compliant than the centers. On the other hand, a tendency to mini-
mize surface energy would favor configuration �b�, as surface en-
ergy is reduced when two islands merge to form a larger island.
Consequently, in cases where mismatch strain is large, multiple
islands clustered at the mesa edge are expected to be favored,
while in cases where surface energy is large a single large island is
expected to be favored. This transition is observed in the present
investigation. However, more interestingly, a second transition is
observed such that as mismatch strain is increased or as surface
energy is decreased the favored configuration transitions from a
single island �b� to two islands �a� and back to a single island �b�.
Similar transitions are found to occur with decreasing mesa size
and with an increasing amount of island material deposited on the
substrate. These observations are consistent with published ex-
periments �1,2�.

2 Model
The system consists of islands deposited atop a raised substrate

mesa as illustrated in Fig. 1. The islands and substrate are mod-
eled as two-dimensional isotropic linear elastic materials with
similar elastic constants. Plane strain conditions are assumed. The
topology is periodic in the y direction with one mesa per period.
The wavelength is taken to be large enough that the elastic inter-
action is negligible between adjacent mesas and islands on adja-
cent mesas. Furthermore, substrate thickness in the x direction is
taken to be sufficiently large to approximate the case of an iso-
lated mesa on a half-plane. Island morphologies are modeled as
circular arcs characterized by a base dimension a and an aspect
ratio h /a. The mesa has a rectangular shape with width D and
height H. The substrate and island surfaces are traction-free, and
tractions are balanced across the interface between the islands and
the substrate. Each island is lattice mismatched with respect to the
substrate and the shared interface is coherent such that the island
is strained by an amount �yy =�m relative to the substrate, where

Fig. 1 Geometry of the system under consideration
�m is the mismatch strain. It is noted that while a two-dimensional

Journal of Applied Mechanics
geometry misses certain inherently three-dimensional effects, it
provides qualitative insight to the mechanisms that control self-
assembly in three-dimensional systems.

Free energy consists of strain energy stored in each island and
the substrate and free energy of the island and substrate surfaces.
Surface energy is taken be isotropic and is given by the same
value � on both the islands and the substrate. Particular configu-
rations are considered �Fig. 2� to determine which has the lowest
free energy. These are based on observations in published experi-
ments �1–3�. For each configuration, island positions are fixed but
the island aspect ratio is variable so that a given configuration
actually represents a series of shapes. The minimum energy con-
figuration is determined amongst all configurations and all island
aspect ratios. For a configuration with two or more islands, all
islands are assumed to have the same aspect ratio.

The free energy of a given configuration depends on a number
of variables. They are surface energy �, mismatch strain �m, biax-
ial film modulus M =2��1+�� / �1−��, where � and � are shear
modulus and Poisson’s ratio, respectively, the mesa dimensions D
and H, and the cross-sectional area A and aspect ratio h /a of the
islands. Under the restriction that the islands are circular arcs,
A , h, and a are not independent—free energy depends only on
two of these variables. Here the aspect ratio h /a is chosen rather
than h or a because it characterizes island shape. Area A charac-
terizes the island size and is given by

A = a2fA��� �2.1�
where

� = h/a �2.2�
is the height-to-width aspect ratio and

fA��� = � 1

8�
+

�

2
�2

arctan
4�

�1 − 4�2�
−

�1 − 4�2�
16�

�2.3�

is a nondimensional function of aspect ratio. Some configurations
have multiple islands and to avoid confusion with the area of a
single island, the total cross-sectional area of material in all is-
lands is defined as

AT = nA �2.4�

where n is the number of islands. Area AT corresponds to the
amount of island material deposited on the substrate.

The system free energy is given by

E = U + � �2.5�

where U is strain energy and � is the surface energy measured
relative to the case of no islands on the substrate. All energies are
measured per unit depth into the plane of Fig. 2. Surface energy is
calculated as

� = an��fL��� − 1� �2.6�

Fig. 2 The four island configurations considered for the ener-
getic analysis. „a… A single centered island, „b… dual edge
mounted islands, „c… three islands, one at each edge and one in
the center, and „d… an asymmetric single edge mounted island.
where
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fL��� = � 1

4�
+ ��arccos

1 − 4�2

1 + 4�2 �2.7�

is a dimensionless function of island aspect ratio. On dimensional
grounds, the total strain energy of a given configuration is of the
form

U = MATG��m,�,�,D̄,H̄� �2.8�

where G is a dimensionless function and

D̄ =
D

�AT

and H̄ =
H

�AT

. �2.9�

Following the observation of Johnson and Freund �6� that the
strain energy scales as �m

2 , �2.8� can be rewritten as

U = M�m
2 ATFc��,�,D̄,H̄� �2.10�

where Fc is a dimensionless function—subscript “c” acts as a
reminder that Fc depends on the particular configuration of Fig. 2.
Free energy is nondimensionalized as

Ē =
E

M�m
2 AT

= Fc��,�,D̄,H̄� + L̄�� fL��� − 1

��fA���/n
� �2.11�

where

L� =
��

M�m
2 and L̄� =

L�

�AT

. �2.12�

Length L� is characteristic of the epitaxial system �12�.
Evaluation of �2.11� requires the function Fc�� ,� , D̄ , H̄� be cal-

culated, which is defined by �2.10�. It is calculated by the finite
element method using the commercial software package Abaqus.
The epitaxial mismatch between the island and substrate materials
was imposed by applying a transformation strain in the islands.
Substantial mesh refinement is required in the vicinity of island
edges due to large stress concentrations at those regions. Mesh
refinement at the corners of the substrate mesa is typically needed
only when an island is nearby. A convergence analysis was done
to ensure accurate evaluation of the function Fc. Figure 3 illus-
trates a typical mesh in the vicinity of an island at the edge of a
mesa.

3 Results and Discussion
Given a particular epitaxial system �i.e., the film and substrate

materials� and given the substrate topology, the system free en-
ergy depends on the amount of film material deposited AT, the
aspect ratio of the islands �, and the configuration of the islands
�Fig. 2� as described by �2.11�. In this section the combination of

Fig. 3 A typical finite element mesh in the vicinity of an island
at the edge of a mesa
these variables that minimizes free energy is determined.
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3.1 Islands on a Flat Substrate. To illustrate the analysis in
a simple context and to review some basic results, the case of an
isolated island on a flat substrate surface is considered first. In this
case, the free energy depends only on island volume �per unit
length� AT and island aspect ratio �. It is found that for each
volume there is a particular aspect ratio that characterizes the
minimum energy island morphology. In general, island aspect ra-
tio increases as volume increases. It is also demonstrated that
there is a tendency for two islands to coalesce and form a single
larger island.

Equilibrium Shape of an Isolated Island. Parameters D̄ and H̄
that characterize substrate topology �normalized by island vol-
ume� drop out of the expressions �2.10� and �2.11�. Furthermore,
the subscript can also be removed from Fc as there is no longer a
need to distinguish between configurations, and �2.10� and �2.11�
can be rewritten as

U = M�m
2 ATF��,�� �3.1�

and

Ē = F��,�� + L̄�� fL��� − 1

��fA���/n
� �3.2�

respectively. Equation �3.2� is the nondimensional total energy of
n non-interacting �isolated� islands on a flat substrate. A variable
number of islands n are retained in this expression for later refer-
ence. Here it is taken to be unity. Given the function F�� ,��,
calculated for an isolated island by finite element analysis, and the
functions fA��� and fL���, given by �2.3� and �2.7�, curves of free

energy versus � are obtained for fixed values of L̄�, as shown by
the solid lines in Fig. 4�a�.

Each of these curves has a single minimum. Noting from �2.12�
that L̄� depends on the inverse of island size �AT, each minimum
represents the most energetically favorable configuration for an
island of a given size. The locus of minima is traced as a dashed
line in Fig. 4�a�. Figure 4�b� plots the minimum energy configu-

rations as � versus L̄� and shows that aspect ratio increases with

decreasing L̄� or equivalently with increasing island volume.
These curves are the same as those obtained previously by
Johnson and Freund �6�.

This exercise illustrates the tendency of surface energy to flat-
ten the morphology—island aspect ratio decreases as surface en-
ergy is increased. At the same time it illustrates that a high mis-
match strain tends to produce high aspect ratio islands. As island
aspect ratio is increased, the constraint of the substrate on the
island is reduced and allows a larger amount of the mismatch
strain in the island to be relaxed. A similar phenomenon should
occur for islands near the edge of a substrate mesa. For an island
at a mesa edge, enhanced compliance at the edge allows a larger
amount of strain relaxation than an island at the center of a mesa.
Hence mismatch strain should drive islands to form at the edges.

Island Coarsening. The same data show that two islands will
tend to combine and form a single larger island. Consider �3.2�,
which is the total energy of n non-interacting �isolated� islands.
Compare, for example, the energy of a single island �n=1� versus
two smaller islands of the same total volume �n=2�. If the aspect

ratios � are equivalent and L̄� is nonzero, the energy of the two-
island configuration is always larger than that of the single larger
island configuration. In this case coalescence is driven by only the
second term in �3.2�, which implies that it is surface energy and
not mismatch strain that drives coalescence. When the islands are
allowed to relax their aspect ratios to achieve their minimum en-
ergy shapes, it is found that mismatch strain also drives coales-
cence. This is because the function F�� ,�� decreases monotoni-
cally with increasing aspect ratio and, according to Fig. 4�b�,

island aspect ratio increases with increasing island size �decreas-
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ing L̄��. Increasing aspect ratio also tends to increase surface en-
ergy, which acts against coalescence. The combination of these
effects gives rise to the behavior shown by Fig. 5. Figure 5 plots
the energy density of two islands relative to a single larger island

versus L̄�. The relative energy density is representative of the
driving force for coalescence of the two islands. It is found that

Fig. 4 „a… Plot of nondimensional free energy versus aspect
ratio for an island on a flat substrate. Solid lines plot curves of
fixed L̄�=0, L̄�=0.125�, L̄�=0.25�, L̄�=0.375�, L̄�=0.5�, L̄�

=0.625�, L̄�=0.75�. The dashed line traces energy minima for
different values of L̄�. „b… Aspect ratio of the minimum free en-
ergy island plotted versus L̄� obtained from the dashed line in
„a…. Poisson ratio is �=0.25.

Fig. 5 Dimensionless free energy of two non-interacting is-
lands measured relative to that of a single island of the same
total volume plotted versus the normalized characteristic

¯
length L�. Poisson ratio is �=0.25.
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the tendency for islands to coalesce grows, reaches a maximum,

and then begins to decrease as L̄� is increased. As L̄�→� �as
mismatch strain vanishes�, the minimum energy configuration be-
comes a flat film of uniform thickness. Since the single and double
island configurations are indistinguishable in this case, the driving

force is expected to vanish for large values of L̄�. The key feature
to note for future reference is that while there is a driving force for
coalescence in all cases, it may be large or small depending on the
system parameters, which include island size, mismatch strain,

and surface energy as characterized by L̄� �2.12�.

3.2 Islands on a Substrate Mesa. For the case of islands on
a substrate mesa, a similar analysis is done, however the minimum

energy configuration now depends on the substrate patterning �D̄
and H̄� and the island sizes and positions relative to the pattern
�Fig. 2�. The analysis is done on each of the four configurations in
Fig. 2. For a given total volume of material within the islands and
a given epitaxial system �fixed L��, the aspect ratio of the islands
is determined that renders free energy a minimum. Within each
test configuration, all island aspect ratios are taken to be
equivalent.

Figure 6 is a sample calculation of free energy versus island

aspect ratio for each of the four configurations in the case of L̄�

=1, D̄=23.7, and H̄=8.4. Considering, for example, a single is-
land with the shape of a semi-circular cap ��=0.5� and diameter
a, the ratios of mesa width and height to island size are D /a
	15 and H /a	5.

The plot determines the island aspect ratio and the correspond-
ing free energy of the minimum energy state for each configura-
tion. In this case the ground state is the single asymmetric edge
mounted island with an aspect ratio of �	0.25. Two metastable
states are observed to have roughly the same free energy. They are
the single centered island with �	0.3 and the dual edge mounted
islands with �	0.22. The triple island configuration with �
	0.2 is a metastable state with the highest free energy amongst
the configurations considered. One would expect configurations
with four or more islands to have yet higher free energies.

Similar plots are obtained for a range of L̄� to obtain a plot of

the energy minima versus L̄� for each configuration, which is
shown in Fig. 7. This plot can be interpreted as a phase diagram
that displays the equilibrium and metastable configurations for

fixed geometric parameters, D̄=23.7 and H̄=8.4, and a range of
epitaxial systems as characterized by a surface energy �, a mis-
match strain �m, and a film modulus M per �2.12�—� increases

¯

Fig. 6 Plots of dimensionless free energy versus aspect ratio
for islands on a substrate mesa in the case L̄�=1, D̄=23.7, H̄
=8.4, and �=0.25. Curves correspond to the configurations
shown in Fig. 2.
and �m and M decrease as L� is increased. Note that according to
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the definitions of D̄ and H̄, �2.9�, the ratio of the mesa size to the
amount of film material on the mesa is fixed. Therefore this plot
does not address how the configuration might evolve during depo-
sition. This issue is addressed later.

Figure 8 plots the corresponding island aspect ratios of the

minimum energy configurations in Fig. 7 versus L̄�. The data
along with �2.3� and �2.9� can be used to determine the configu-
ration geometries. Island aspect ratios range from about �=0.1 to
0.4. In the case of a single island the ratio of mesa width to island
width ranges from about D /a=6 to 13. For double and triple
island configurations the values of D /a are respectively double
and triple of these values.

Small Islands and the Early Stage of Growth. As the islands are
fairly small compared to the mesa size and islands are well sepa-
rated in the double and triple island configurations, the trend ex-
hibited in Fig. 7 is not expected to change as island size is de-
creased further. Hence Fig. 7 characterizes the behavior of the
initial formation of islands. The figure shows that the single asym-
metric edge-mounted island is always the minimum energy con-
figuration for the systems considered, which implies that it is the
most favorable configuration for the initial stage of film growth.
While this configuration has been observed to form �1�, there are
many examples of other configurations �1–3�. Whether a single
asymmetric island initially forms is a matter of kinetics. For ex-

Fig. 7 Minimum free energy state for each of the configura-
tions in Fig. 2 plotted versus the normalized characteristic
length. The geometric parameters are D̄=23.7 and H̄=8.4 and
Poisson ratio is �=0.25. These curves plot the minima of the
curves in Fig. 6 and similar plots that are not shown.

Fig. 8 Island aspect ratio � of the minimum energy configura-

tions in Fig. 7 plotted versus normalized characteristic length

216 / Vol. 73, MARCH 2006
ample, high deposition rates can cause many islands to form atop
a mesa �11�. Even when the deposition rate is slow, in which case
growth tends to follow energetic predictions, it is likely that is-
lands will nucleate at both edges as in Fig. 2�b� rather than asym-
metrically on one edge because the edges are similar and both are
equally favorable sites. Supposing that the double island configu-
ration forms initially, the question of whether it can spontaneously
transform into the lower energy configuration of Fig. 2�d� re-
mains. This is addressed later. For now it is sufficient to note that
similar double island configurations on a different patterned sub-
strate have been found to be stable against such a transformation
and may in fact form instead of a lower energy single island
configuration �11�. The nature of the metastable configurations in
Fig. 7 therefore warrants discussion.

An interesting feature of the metastable configurations in Fig. 7

is that as L̄� increases, there is a transition from the single cen-
tered island to the dual edge mount islands being the lower energy
state. This is somewhat unexpected. As discussed previously, large
values of �m are expected drive island formation towards the mesa
edges because the edges admit greater strain relaxation in the

islands. In this case large �m �small L̄�� favors the single centered
island over islands at the edges. One possible explanation for this
is as follows. There is always a driving force for two islands to
coalesce and form a single larger island as shown in Fig. 5. A
single island will be favored when the tendency for islands to
coalesce is stronger than the tendency for islands to form at the

edges. The driving force for coalescence decreases when L̄� be-
comes sufficiently large. While the tendency for islands to form at

the edges of the mesa also decreases as L̄� increases �mismatch
strain decreases�, the driving force for islands to form at the edges
becomes stronger than that of coalescence. An additional driving
force associated with the elastic interaction between islands may
also play a role in this transition. However, in the system of Fig. 7
the effect of elastic interactions is likely small. This effect be-
comes important as islands become larger and more closely
spaced as discussed later.

As mismatch strain vanishes, the free energy of the system is
determined by surface energy alone, which is represented by the
second term on the right-hand side of �2.11�. It is then clear that a
system with n islands will have a greater free energy than a sys-
tem with just a single island by a factor of �n. This implies that

for very large L̄� a second transition will exist favoring the single
centered island for very low levels of mismatch strain and the dual
edge islands for higher strain.

Large Islands and Later Stages of Growth. Figure 7 and two
similar plots shown in Fig. 9 correspond to various stages of film
growth. From Fig. 7 to Fig. 9�a� and to Fig. 9�b� the amount of
film material on the substrate mesa is progressively increased, as
demonstrated shortly. In each case, the single asymmetric island

has the lowest free energy for all values of L̄� considered. Figure
9�a� exhibits the same transition between the double and single
island metastable states as in Figure 7, however the transition

point is shifted to a slightly smaller value of L̄�. As the amount of
film material is increased further, as represented by Fig. 9�b�, the
transition disappears and the single centered island becomes fa-

vored over the dual edge-mounted islands for all values of L̄�

considered.
Elastic interactions are likely responsible for the disappearance

of the transition in Fig. 9�b�. Elastic interaction energy tends to
increase the system free energy and gives islands the tendency to
repel �13�. On a finite mesa, the repulsion can cause islands to
separate only as far the edges permit. Two edge-mounted islands
cannot separate further to reduce free energy. The elastic interac-
tion energy increases as the islands increase in size while their
separation distance is held fixed. In the case of Fig. 9�b�, the

interaction energy raises the free energy of the dual edge mounted
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island configuration above that of the single centered island for all
cases considered. This illustrates an important distinction in the
behavior of islands on flat versus patterned substrates. In both
cases island interactions have a role in the development of mor-
phology. However, a substrate pattern can constrain islands such
that they are forced to interact at close range. This enhances the
role of interactions over the case of a flat substrate where islands
are unconstrained except by adjacent islands.

In Figs. 7 and 9, the ratio of mesa width D to mesa height H is
approximately 2.9. To give a physical example of these systems
and to illustrate how Figs. 7 and 9 are interpreted in the context of
film growth, consider �=2 J/m2, �m=4%, and M =140 GPa,
which is representative of Ge islands on Si. The characteristic
length is calculated as L�=28 nm. Take the mesa width to be D
=400 nm. For the case of Fig. 7 the amount of film material on the
mesa is A=285 nm2—this corresponds to a base width of 40 nm
for the case of a single island with aspect ratio �=0.25. The

normalized characteristic length is L̄�=1.66, which lies slightly to
the right of the double to single island transition in Fig. 7. Apply-
ing the same mesa width D=400 nm to Fig. 9�a�, the amount of
film material becomes A=852 nm2. In the case of a single island
with �=0.25 the base width is 70 nm. Note that the island is larger
than in the example of Fig. 7 and hence Fig. 9�a� corresponds to a

later stage of growth. The normalized characteristic length is L̄�

=0.96, which lies slightly to the left of the double to single island
transition in Fig. 9�a�. In this example, the case of the smaller

amount of material �Fig. 7 with L̄�=1.66� favored the double is-
land over the single centered island, while the single centered
island becomes favored as material is added on the mesa �Fig.

9�a� with L̄�=0.96�. Applying the same system to Fig. 9�b�, the
corresponding amount of film material is A=7243 nm2, in which
case a single �=0.25 island has a base width of 204 nm. The

normalized characteristic length is L̄�=0.33. This point lies
slightly outside of the systems illustrated in Fig. 9�b�, but the
trend suggests that the single asymmetric island is most favored
and the single centered island configuration has the next lowest
free energy.

As discussed previously, while a single asymmetric island is the
most energetically favorable at the early growth stage, it is likely
that kinetic mechanisms will cause islands to form simultaneously
at both edges. Symmetric island configurations at the edges of a
mesa are often observed in physical experiments �1–3�. Supposing
that dual edge-mounted islands form initially, the question arises
of whether the system can transform into a state of lower free
energy, for example into an asymmetric edge mounted island
which is always lower in energy. Furthermore, if the dual island
configuration remains after a sufficient amount of deposition, the
case of a single centered island becomes a lower free energy con-
figuration and a transformation could occur towards that state.

Fig. 9 Minimum free energy of each confi
ized characteristic length for the geometri
D̄=4.7 and H̄=1.6. These plots are similar t
While energetics does not provide a complete picture, it offers

Journal of Applied Mechanics
insight to why certain configurations arise. Kitajima et al. �1� ob-
served island configurations on square �three-dimensional� mesas.
Islands were found on the mesa corners in cases where the depos-
ited volume was small compared to the mesa size. In the case of a
larger deposited volume a single centered island was observed.
The present investigation suggests that this transition is energeti-
cally favorable. By analogy with the two-dimensional analysis, it
is expected that islands on the corners will be favored at small
deposited volumes and a single centered island will become fa-
vored once the volume exceeds a critical value.

Effect of Mesa Size. Figures 7 and 9 also apply when the mesa
size is reduced while the amount of deposited material remains
fixed. In this case, the mesa size is successively reduced from Fig.
7 to Fig. 9�a� and to Fig. 9�b�. The plots depend only on the ratio
D /�AT and therefore increasing the amount of material deposited
for a fixed mesa size is equivalent to reducing the mesa size for a
fixed amount of material deposited. The latter corresponds to the
investigation of Kitajima et al. �1�. They observed a transition
from islands on the corners of a square mesa to a single centered
island as the mesa size was reduced. The same insight offered for
the case of increasing the amount of material deposited applies
here.

Coarsening and Transition Pathways Between Configurations.
It is unlikely that only one or two islands will initially form on the
mesa. Instead, many islands will nucleate randomly over the sur-
face with the highest probability of islands forming at low energy
sites such as the mesa edges. The activation energy for nucleation
will be lowest at an edge because an island’s free energy is lowest
there. Which configuration of Fig. 2 ultimately appears depends
on how the initial distribution coarsens. Coarsening takes a system
towards a state of lower free energy as material diffuses from sites
of high chemical potential to sites of low chemical potential. The
chemical potential of an island is defined as the increase in free
energy as an infinitesimal amount of material is added to the is-
land. Coarsening occurs as material deposited on the substrate
preferentially diffuses towards islands of low chemical potential
or as material detaches from certain islands and diffuses to ones of
lower chemical potential. Islands of low chemical potential grow
at the expense of high chemical potential islands or, in the case
that deposition is slow compared to surface diffusion, islands of
high chemical potential may disappear as their material is redis-
tributed amongst islands of lower chemical potential.

In the case of a flat substrate a large island typically has a lower
chemical potential than a smaller one, which drives coarsening.
The chemical potential of an island is largely independent of po-
sition, except when islands are interacting at close range the
chemical potential might depend on their relative positions. A
position dependence is introduced in the case of a patterned sub-
strate. Even when island sizes are equal, those at energetically

ration in Fig. 2 plotted versus the normal-
arameters „a… D̄=13.7 and H̄=4.8 and „b…
ig. 7. The Poisson ratio is �=0.25 in both.
gu
c p
o F
favored sites will have relatively low chemical potentials and
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therefore grow at the expense of other islands.
Suppose, for example, that only three islands nucleate during

the initial growth stage and are positioned as shown in Fig. 2�c�.
To understand how the system might coarsen, the chemical poten-
tial of each island must be calculated. The chemical potentials can
be obtained from the data of Fig. 7, provided it can be applied to
a range of island sizes holding all other parameters fixed. In par-
ticular, the data must be applicable to smaller island sizes than
used to obtain Fig. 7 in order to address the early stages of
growth. This is true only if island interactions are negligible and
islands are small compared to the mesa dimensions such that a
further size reduction has a negligible effect. Island interactions
were found to be negligible by calculating the elastic energy of the
dual edge mounted configuration from that of the single asymmet-
ric island, which neglects the interaction energy. The result was
identical to the corresponding curve in Fig. 7 within numerical
error. A similar calculation confirmed that interactions were neg-
ligible in the three-island configuration. Island size relative to
mesa size affects only the elastic energy of the system, which is
represented by the first term Fc in �2.11�. The functions Fc ob-
tained for the systems of Figs. 7 and 9�a� were found to be equiva-
lent within numerical error. Considering that island size is reduced
by a factor of 3 from the system of Fig. 9�a� to that of Fig. 7, a
further size reduction is expected to change Fc by a negligible
amount. For the case of an island on one of the mesa edges the
function is well represented by

Fedge�� = 0.25,�, · , · � 	 − 7.431�3 + 8.142�2 − 3.375� + 1.000

�3.3�

for aspect ratios �	0.4. For the case of an island at the center it
is well represented by

Fcenter�� = 0.25,�, · , · � 	 − 2.467�3 + 4.097�2 − 2.473� + 1.000

�3.4�

for aspect ratios �	0.45. These results along with �2.11� can be
used to evaluate the chemical potentials during the earliest stages
of growth until island interactions become significant or island
sizes become large compared to the mesa dimensions. It is noted,
however, that island sizes must be large enough for the continuum
framework to apply.

The equilibrium aspect ratio of an edge or centered island is
readily evaluated by using �3.3� or �3.4� in �2.11� and determining
� such that free energy is minimized. For systems having suffi-

ciently large values of D̄ and H̄, the aspect ratio is a function only

of L̄�. The results are in agreement with Fig. 8. Using �=��L̄��
and L̄�=L� /�A in �2.11�, the chemical potential 
 of an island is
evaluated as




M�m
2 =

D�ĒA�
DA

= Fc��,�, · , · � −
L̄�

2

�Fc��,�, · , · �
��

d�

dL̄�

+
L̄��fL��� − 1�

2��fA���
+

L̄�
2

4�fA���3/2

d�

dL̄�

��fL��� − 1�
dfA���

d�

− 2fA���
dfL���

d�
� . �3.5�

Results for the edge-mounted and centered islands are plotted in
Fig. 10.

It is found that an edge-mounted island generally has a lower
chemical potential than a centered island of the same size �same

value of L̄��. Hence, if the configuration of Fig. 2�c� forms during
the initial growth stage, the tendency will be for material to dif-
fuse from the centered island to the edge mounted islands. If
deposition is fast compared to surface diffusion, the configuration
of Fig. 2�c� might persist past the transition in Fig. 7 where a

single centered island is favored. However, according to Fig. 10,
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the edge-mounted island will still have a lower chemical potential
and mass transport will occur such that the centered island shrinks
and the edge islands grow. While the centered island is favored,
there is an activation barrier that must be overcome for it to form
from the configuration of Fig. 2�c�. As shown in Fig. 10, the
centered island must be sufficiently larger than an edge island for
it to have a lower chemical potential. For example, considering an

edge-mounted island with L̄�=2, the centered islands must have

an L̄� less than about 1.4 for it chemical potential to be smaller.
This implies that the centered island must be about twice as large

in volume. This ratio decreases as L̄� decreases or equivalently as

island sizes increase. For example, if L̄�=1 for an edge-mount
island, the centered island must be about 1.6 times larger. This is
consistent with the observation from Fig. 7 that a centered island
becomes more favorable as the amount of deposition increases. It
is unlikely that a centered island will grow to be substantially
larger than islands at the edges, as the tendency is for the edge-
mounted islands to grow faster. However, if many islands nucleate
on the mesa and deposition is fast enough, two islands near the
center might merge �grow into each other� to form a larger island
with a chemical potential lower than the edge islands. A single
centered island might then form. It is noted that the observation of
edge islands generally having a lower chemical potential than a
centered island of the same size is limited to cases where elastic
interactions are small. As the islands grow, elastic interactions will
begin to affect their chemical potentials, which might cause the
centered island to achieve a lower chemical potential than the
edge mounted islands at some stage in the growth process. This
has yet to be investigated and is left for future work. It is con-
cluded that a single centered island is likely to form only if the
deposition rate is fast compared to mass transport along the sur-
face. Islands must nucleate at multiple sites across the mesa and
grow fast enough for islands near the center to remain through to
a sufficient amount of growth where island interactions become
significant or islands begin to merge.

If a single centered island forms, free energy can be reduced
further if it transforms into a single asymmetric edge-mounted
island. A transformation cannot occur with a spontaneous flow of
mass from the centered island to an incipient island at the edge.
This is because a very small edge island typically has a larger
chemical potential than a large centered island. A transformation
might occur as the entire island translates towards the edge by
surface diffusion. This, however, would occur rather slowly if at
all. Large islands appear to be immobile, either because they
move very slowly or because their motion requires a substantial

Fig. 10 Plots of chemical potential versus normalized charac-
teristic length for small edge mounted and centered islands.
The results apply to systems of sufficiently large D̄ and H̄. Pois-
son ratio is �=0.25.
activation energy �11�.
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In the case of a dual edge-mounted island configuration, free
energy can be reduced if it transforms into an asymmetric edge
mounted island. The transformation is unlikely to occur by the
translation of one island towards the other because the islands
tend to repel each other and are attracted to the edge. It might
occur with an incremental transfer of mass such that one island
grows while the other shrinks, provided free energy decreases
throughout the entire process. Suppose that both islands are ini-
tially of the same size A—the free energy is 2E�A�. If a small
amount of mass �A is transferred between the islands, the free
energy becomes E�A−�A�+E�A+�A�. For small values of �A
the change in energy is

�E =
D2E

DA2 ��A�2 + O��A�3 =
D


DA
��A�2 + O��A�3

= −
D


DL̄�

L̄�

2A
+ O��A�3. �3.6�

It is observed that an incremental mass transfer will reduce the

free energy if D
 /DL̄��0, which is shown to be the case in Fig.
10. This implies that small and well-separated edge-mounted is-
lands are unstable. Mass will spontaneously diffuse from one is-
land to the other and form a single edge mounted island. As Fig.
10 does not account for island interactions, the same conclusion
cannot be made for islands that are large and closely spaced. Is-
land interaction might play an important role in stabilizing the
dual edge-mounted island configuration as observed in a similar
two-island configuration on a different patterned substrate �11�.
More investigation is needed to determine if island interactions
have a stabilizing effect on the dual edge-mounted island configu-
ration addressed here.

4 Conclusions
The energetics of strained epitaxial islands on a substrate mesa

were studied to understand the mechanisms that drive the forma-
tion of different island configurations during growth. The goal
was to determine if configurations that arise in physical experi-
ments correspond to minimum energy states or if they are kineti-
cally driven. The free energy of the system was taken to consist of
the elastic energy induced by a lattice mismatch between the sub-
strate and island materials and a surface energy. Systems with a
single island at either the center of the mesa, or asymmetrically
mounted at a single edge of the substrate mesa were considered,
along with a dual island configuration with one island at each
mesa edge, and the three-island configuration with one island at
each edge and the third mounted at the center of the mesa top.
These represent configurations reported in the experimental litera-
ture.

It was found that a single asymmetrically mounted island lo-
cated at one mesa edge is generally the minimum energy configu-
ration for this type of system. This is attributed to the reduction in
strain energy associated with an enhanced compliance near the
mesa edge and the general tendency of material to agglomerate
into a single island to reduce both strain energy and surface en-
ergy. Possible metastable states consisting of two edge mounted
islands and a single centered island were found to show a transi-
tion in their relative favorability that depends on the volume of
material deposited and mesa size. A single island is energetically
favored when the deposited volume is large and when the mesa
size is relatively small. Two islands are favored for small depos-
ited volumes and when mesa size is relatively large. This is attrib-
uted to a competition between the energetic forces driving coales-
cence and those tending to position islands at the mesa edges. This
transition is lost for sufficiently large islands or small mesas
where the interaction energy between islands becomes significant
and makes multiple island configurations increasingly unfavor-

able. These findings provide insight into the observation of Kita-
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jima et al. �1� that mesa size plays an important role in determin-
ing the configuration that develops.

Island growth was considered by comparing the chemical po-
tential of islands at different sites and sizes on the mesa. Multiple
islands are likely to nucleate during the earliest stage of growth,
and as the ultimate configuration arises some islands disappear
while others grow. Islands of low chemical potential will grow
faster than others by preferential deposition or as material diffuses
from islands of higher chemical potential. It was found that an
island at the edge of the mesa will have the lowest chemical
potential unless another island is substantially larger in size.
Hence, islands at the edges are likely to grow at the expense of
other islands. This is true even in cases where a single centered
island is energetically favored over two edge-mounted islands of
the same total volume. It is concluded that the formation of a
centered island is unlikely except in systems where deposition rate
is much faster than mass transfer by surface diffusion. In such
cases two or more islands near the center could grow together to
form a single large island with a lower chemical potential than
smaller islands at the edge. For the systems considered, an island
at the center must be about 1.5 to 2 times larger than an island at
the edge in order for its chemical potential to be lower. These
observations assume that the elastic interaction between islands is
negligible. Further investigation is needed to determine the impli-
cation of strong interactions that occur when islands are large and
spaced closely together. It was found that when island interactions
are negligible the dual edge-mounted island configuration is un-
stable and can spontaneously transform into a single asymmetric
edge-mounted island via mass transfer from one island to the
other. Recent work by Kukta and Kouris �11� suggests that island
interactions might stabilize such a configuration. Further investi-
gation is needed to determine if the dual edge-mounted island
configuration is stabilized in the current system.
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The Mode III Interface Crack in
Piezo-Electro-Magneto-Elastic
Dissimilar Bimaterials
The mode III interface crack problem is investigated for dissimilar piezo-electro-
magneto-elastic bimaterial media, taking the electro-magnetic field inside the crack into
account. Closed form solutions are derived for impermeable and permeable cracks. The
conventional singularity of r−1/2 is found for the fields at the distance r ahead of the
interface crack tip. Expressions for extended crack tip stress fields and crack opening
displacements (ECODs) are derived explicitly, and so are some fracture parameters, such
as extended stress intensity factors (ESIFs) and energy release rate (G) for dissimilar
bimaterials. An approach called the “energy method,” finding the stationary point of the
saddle surface of energy release rate with respect to the electro-magnetic field inside the
crack, is proposed. By this method, the components of the induced electro-magnetic field
inside the crack are determined, and the results are in exact agreement with those in the
literature if the two constituents of the bimaterial media are identical. The effects from
mechanical and electro-magnetic property mismatches, such as differences in the stiff-
ness, electric permittivity and magnetic permeability, between the two constituents of the
bimedia on the mode III interface crack propagation are illustrated by numerical simu-
lations. The results show that the applied electric and magnetic loading usually retard the
growth of the interface crack and the directions of the combined mechanical, electric, and
magnetic loading have a significant influence on the mode III interface crack
propagation. �DOI: 10.1115/1.2073328�
1 Introduction

One class of contemporary materials, widely used in engineer-
ing in devices �in sensor, transducer, actuator components, etc.�,
are the piezoelectric and piezomagnetic composite materials. Due
to their exceptional functions, such as flat frequency response
�1–4� and transformation of energy from one form to the other
�mechanical, electric, and magnetic energy, or thermal energy�
�5,6�, this type of composite exhibiting piezoelectric and piezo-
magnetic properties has found increasing applications in micro-
wave electronic, optoelectronic, and electronic instruments. Like
in conventional composites, defects or flaws may usually be in-
troduced during the manufacturing process or during service by
impact loading. These defects would often deteriorate the perfor-
mance of the devices being made of piezo-electro-magneto-elastic
media.

Recently, more and more attention has been directed towards
the problems of cracks in the electro-magneto-elastic solids
�7–12�. Dissimilar bimaterials or layered composites are often in-
corporated into a variety of components, such as smart structure
sensors, actuators, and broadband magnetic probes. Having been
recognized as one of the common failure modes of general dis-
similar bimaterial media, the interface cracks could also be devel-
oped in the piezo-electro-magneto-elastic structures and thus af-
fect the features of the electro-magneto-elastic apparatus. Though
these interface cracks may severely diminish the performance of
this type of structure, one may see that little attention has been
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until four months after final publication in the paper itself in the ASME JOURNAL OF
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given to the study of the magneto-electric coupling effects on the
interface crack propagation behavior in piezo-electro-magneto-
elastic bimaterials.

The magneto-electric coupling effect of piezoelectric and piezo-
magnetic fields usually has a significant influence on the behavior
of piezo-electro-magneto-elastic bimaterials or layered structures
�3,4,13�. This coupling among the magnetic, electric, and elastic
fields is also expected to have an influence on the propagation
behavior of interface crack/delaminations when piezoelectric, pi-
ezomagnetic, and magneto-electric effects, or any two of these
effects, are present simultaneously �1�. These coupling effects
usually complicate this interface crack problem. In order to get
insight into the interface crack problems of dissimilar piezo-
electro-magneto-elastic bimaterial composites, the mode III inter-
face crack is investigated in this paper by using Stroh’s formulism
�14� and the complex variable method. Two types of mode III
interface cracks are analyzed. One is called permeable interface
crack for which the magneto-electric field inside the interface
crack is considered. The other type is called impermeable.

This paper is organized as follows: �1� In Sec. 2 is a summary
of some basic equations for piezo-electro-magneto-elasticity in
Strohs formalism. �2� A compact form solution to the interface
crack is formulated in Sec. 3. The expressions for the ECOD,
ESIF, and the energy release rate are derived in closed form. The
“energy method” is also proposed in this section and used to ob-
tain the solution to the magneto-elastic field inside the interface
crack. One may interestedly find that this method could be ex-
tended to more complicated problems in piezo-electro-magnetic
elastic solids. �3� The numerical results in Sec. 4 show the influ-
ence of the property mismatches between the two constituents on
the interface crack propagation. An interesting result one may find
is that the applied external electric-magnetic field may slow the
growth of mode III interface cracks in piezo-electro-magneto-
elastic bimaterial solids. Since all the formulas in this paper are
obtained in explicit expressions, and are thus easily trackable, this
study may serve as a benchmark for further investigations in

piezo-electro-magneto-elastic media
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2 Basic Equations
In a fixed Cartesian coordinate system �x1 ,x2 ,x3�, the general-

ized Hookes law for an elastic material with both piezoelectric
and piezomagnetic fields is of the following form �1�:

�ij = cijkluk,l + elij�,l
E + �lij�,l

H,

Di = eikluk,l − �il�,l
E − �il�,l

H, �1�

Bi = �ikluk,l − �li�,l
E − �il�,l

H

where i , j ,k , l range in �1, 2, 3� and the repeated indices imply
summation, the comma stands for differentiation with respect to
corresponding coordinate variables; �ij is the elastic stress, uk is
the elastic displacement, and cijkl is the elastic moduli tensor; Di is
the electric displacement, �E is the electrostatic potential, and �il
is the electric permittivity; Bi is the magnetic induction �magnetic
fluxes�, �H is the magnetic scalar potential, and �il the magnetic
permeability; eikl , �ikl, and �li are the piezoelectric, piezomag-
netic, and magnetoelectric coefficients, respectively. For the ma-
terial constants, the following relationships hold:

cijkl = cjikl = cijlk = cklij, eikl = eilk, �ikl = �ilk,
�2�

�il = �li, �il = �li, �il = �li

The equilibrium equations in the absence of body forces read

�ij,j = 0, Di,i = 0, Bi,i = 0 �3�

For two-dimensional antiplane deformation of a transversely iso-
tropic solid, we have

u1 = 0, u2 = 0, u3 = u3�x1,x2� ,
�4�

�E = �E�x1,x2�, �H = �H�x1,x2�

One may define the extended displacement as

u = �u3,�E,�H�T �5�

For a plane system, a nontrivial solution to Eq. �3� may then take
the following form:

u = A f�z�� + Ā f̄�z̄��, � = B f�z�� + B̄ f̄�z̄��, z� = x1 + p�x2

�6�

where � is the stress function vector and f�z�� are functions to be
determined by boundary conditions.

If one defines the extended stress fields as

t = ��32,D2,B2�T, s = ��31,D1,B1�T �7�

then these stresses can be written in terms of the stress functions
as

s = �−
��i

�x2
�T

, t = � ��i

�x1
�T

= �� �8�

Substituting Eq. �6� back into the equation �3�, one readily obtains

A = I = diag�1,1,1�, B = i	 c44 e15 �15

e15 − �11 − �11

�15 − �11 − �11

, p� = i �9�

where i2=−1.
If we define a matrix M as

M = iAB−1, �10�
then

Journal of Applied Mechanics
M = 	 �11�11 − �11
2 e15�11 − �11�15 �11�15 − �11e15

e15�11 − �11�15 − �15
2 − c44�11 c44�11 + e15�15

�11�15 − �11e15 c44�11 + e15�15 − e15
2 − c44�11

2 
��

�11�

where

� = c44�11�11 + e15
2 �11 + �11�15

2 − 2�11e15�15 − c44�11
2 �12�

The matrix M is real and symmetric.

3 A Solution to Mode III Interface Crack
Let the medium “I” occupy the upper half-space �donated by L�

and medium “II” be in the lower half-space �donated by R� �Fig.
1�. Then from Eqs. �6� and �9�, one has the following expression
for this bimedia:

uI = �I�z� + �̄I�z̄�, �I = BI�I�z� + B̄I�̄I�z̄� �13�

where, uI ,�I are displacement and stress functions for z�L, and

uII = �II�z� + �̄II�z̄�, �II = BII�II�z� + B̄II�̄II�z̄� �14�

where uII ,�II are displacement and stress functions for z�R.
For convenience, the symbols “I” and “II,” denoting the quan-

tities for medium “L” and “R,” respectively, may be put as sub-
scripts or subscripts.

Let the interface crack be located in the region a	x1	b ,−

	x3	
 of the plane x2=0. The p0


= ��i2

 �T= ��32


 ,D2

 ,B2


�T is ap-
plied at infinity �Fig. 1�. Inside the crack often is air or vacuum,
and the electro-magnetic field usually is considered constant under
uniform remote applied load �11,12, etc.�. These unknown com-
ponents for the electro-magnetic field are denoted as D�

0 , B�
0 , E�

0 ,
and H�

0 , which, respectively, observe the relationships

E�
0 =

D�
0

�0
, H�

0 =
B�

0

�0
, � = �1,2� �15�

Employing the superposition principle leads the original bound-

Fig. 1 An interface crack between dissimilar anisotropic
bimedia
ary value problem to an equivalent problem with the loading
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p0 = ��32

 ,�D2

0,�B2
0�T �16�

being applied on the two surfaces of the interface crack, where, in
Eq. �16�,

�D2
0 = D2


 − D2
0, �B2

0 = B2

 − B2

0. �17�

The displacement continuity along the bonded interface gives

�I+�x1� + �̄I−�x1� = �II−�x1� + �̄II+�x1�
or

�I+�x1� − �̄II+�x1� = �II−�x1� − �̄I−�x1� �18�
A function can be defined being analytical on the whole plane,

except the cut along the interface crack, as follows:

��z� =��I�z� − �̄II�z� , z � L

�II�z� − �̄I�z� , z � R
 �19�

Then, this function automatically satisfies the condition �18�.
Here, a convention

��z� = �±�x1�, x2 → 0± �20�

is employed and will be used in the following sections.
Differentiation of Eq. �19� with respect to z yields

���z� =��I��z� − �̄II� �z� , z � L

�II� �z� − �̄I��z� , z � R
 �21�

The stress continuity on the bonded interface leads to

BI�I+� �x1� + B̄I�̄I−� �x1� = BII�II−� �x1� + B̄II�̄II+� �x1� �22�

Similarly, we can define a function, which automatically satisfies
the condition �22� and is analytical on the whole plane except the
cut along the interface crack, as

��z� =�BI�I��z� − B̄II�̄II� �z� z � L

BII�II� �z� − B̄I�̄I��z� , z � R
 �23�

From Eqs. �21� and �23�, we obtain

BI�I��z� = N�i ���z� + M̄II��z�� , �24a�

B̄II�̄II� �z� = BI�I��z� − ��z�, z � L; �24b�

and

BII�II� �z� = N̄�i ���z� + M̄I��z�� , �25a�

B̄I�̄I��z� = BII�II� �z� − ��z� z � R �25b�
In the above equations, the following matrix was used:

N−1 = MI + M̄II = MI + MII �26�

Since MI and MII are real symmetric, so is N. Furthermore, define

H = MI + MII �27�
Therefore, the boundary traction conditions along the interface

crack surface give

BI�I+� �x1� + BII�II−� �x1� − �−�x1� = − p0�x1� , �28a�
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BII�II−� �x1� + BI�I+� �x1� − �+�x1� = − p0�x1� �28b�
Subtraction of Eq. �28b� from �28a�� yields

�+�x1� − �−�x1� = 0 �29�

which implies that the ��z� is continuous on the whole interface.
By the analytical continuation principle �15�, the function ��z�

is analytical on the whole plane. But according to Liouville’s
theorem �15�, this ��z� must be a constant function in the whole
domain. However, the condition that this function should vanish at
infinity means this constant function must be identically zero in
the whole plane, i.e.,

��z� = 0, for all z �30�
Either Eq. �28a� or �28b� leads to a general Hilbert equation in

matrix notation:

�+��x1� + �−��x1� = i Hp0�x1�, a 	 x1 	 b �31�
The homogenous equation corresponding to the general Hilbert

equation �31� can be written as

X+�x1� + X−�x1� = 0, a 	 x1 	 b �32�
where

X�z� =
1

��z − a��z − b�
diag�1,1,1� �33�

A solution which vanishes at infinite could be �16�

���z� =
1

2i
X�z��

ab

�X�x1��+
−1H�i p0�x1��dx1

x1 − z
�34�

Specifically, for constant applied loading, one has �see the Ap-
pendix�

���z� = diag�1 −
z − �a + b�/2

��z − a��z − b�
�H

2
�ip0� �35�

Integrating Eq. �35� results in

��z� = diag�z − ��z − a��z − b��
H

2
�ip0� �36�

where the constant contributing rigid body motion is omitted.
Next, let us consider some fracture characterizing parameters

such as the crack tip field intensity factors, extended displacement
discontinuities near the crack tips, and the energy release rate.

From the equations �24a� and �25b�, the extended traction along
the interface could be expressed as

t�x1� = N i�+�x1� + N̄ i�−�x1� = H−1�i �+�x1� + i �−�x1��
�37�

We shall show that the right-hand side of Eq. �37� is real, as
required.

Substituting the stress function �34� to traction expression �37�
leads to

t�x1� = − p + �X+�x1� + X−�x1���x1 −
a + b

2
�p0/2 �38�

When Eq. �32� is employed, the traction along the interface

reads:
t�x1� = �− p0 + ��x1 − a��x1 − b��−1/2diag�x1 −
a + b

2
�p0, x1 	 a and b 	 x1

− p0, a 	 x1 	 b
� �39�
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which is a real vector as expected.
Then the extended tractions at a distance “r” ahead of the crack

tip such as “b” �Fig. 1� can be expressed in the form of

t�r� = �2 r�−1/2��b − a�
2

p0 = �2 r�−1/2�K�,KD,KB�T

�40�

where K’s are real numbers and defined as

K� =��b − a�
2

�32

 , KD =��b − a�

2
�D2

0,

KB =��b − a�
2

�B2
0 �41�

These K’s may be called the extended stress intensity factors
�ESIFs�. If we let

K = �K�,KD,KB�T �42�

then the expression �42� becomes

K =��b − a�
2

p0 �43�

with p0 defined in �16�.
One may also extend the conventional crack open displacement

�COD� to piezo-magneto-electric materials. From Eqs. �13�, �14�,
and �19�, this extended crack open displacement �ECOD� may
readily be evaluated by

�u�x1� = u+
I �x1� − u−

II�x1� = �+�x1� − �−�x1�

= ���x1 − a��b − x1��1/2H p0, a 	 x1 	 b

0, x1 	 a or b 	 x1;
 �44�

Then the ECOD at a small distance “r” behind the tip of the
interface crack may read

�u�r� =� r

2
H�2K� �45�

also an expected real vector.
Now, the energy release rate, G, can be computed and it reads

G =
1

2
lim

�→0+

1

�
�

0

�

t�r�T�u�� − r�dr =
1

2
KTHK �46�

One may realize that all the expressions derived so far include
the unknown components D2

0 and B2
0 of the electro-magnetic field

inside the crack. There are two approaches to determine these
unknowns. The first method views the crack as a degenerated
hole, using the continuous conditions on the hole surface to deter-
mine the electric-magnetic fields. This method may work well for
monolithic material as shown in literature such as in �12�, because
of the convenient affine mapping function. But it is hard to extend
this method derived for monolithic materials to the bimaterial me-
dia because of the differences in the material properties between
the two constituents of a bimaterial system. To offset this diffi-
culty, here, another approach, called the “energy method,” is pro-
posed. As one may know, when a remote load starts to apply, an
electric-magnetic field begins to build up inside the interface
crack. This newly built field causes reactions to fields induced by
the applied loading inside the whole material system. One may
see that the energy release rate, G, is a saddle surface with respect
to variables, D2

0 and B2
0, the electric-magnetic field inside the in-

terface crack. This means for each value of G, there exist many
corresponding sets of D2

0 and B2
0 except at the stationary point, in

which only a unique D2
0 and B2

0 corresponds to a unique value of

G.
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Therefore, the value of D2
0 and B2

0 at the stationary point could
be the final competition result of the above-mentioned interaction.
Then one would have following equations:

�G

�D2
0 = H12�32


 + H22�D2
0 + H32�B2

0 = 0, �47a�

�G

�B2
0 = H13�32


 + H23�D2
0 + H33�B2

0 = 0 �47b�

which leads to

D2
0 = D2


 − �D2
0 = D2


 − �H23H31 − H21H33�/�H22H33 − H23
2 ��32


 ,

B2
0 = B2


 − �B2
0 = B2


 − �H21H32 − H22H31�/�H22H33 − H23
2 ��32




�48�

where Hij �i , j=1,2 ,3� are elements of the bimaterial matrix H
defined in �27�. The result of �48� can be shown the same as those
in literature if the two media of this current bimaterial are identi-
cal. This agreement justifies the above energy method. From the
result in �48�, one may see that the electric-magnetic field inside
the interface crack is a function of the bimaterial property under
given remote applied loading.

One may also observe from �47a� that if one wants D2
0→0

without magnetic field, then H22 needs to approach a very big
value. This is called electrically impermeable. The parameter �e,
introduced by McMeeking �17�, is used to characterize the electric
permeability. A similar parameter, �m, could be defined from the
observation made on �47b�, in which if B2

0→0 without electric
field, then H33 has to approach a very big value, a phenomenon
called magnetically impermeable. These two parameters �e and
�m have the relationship of �m /�e= ��0 /�0� / �H22/H33�.

Therefore, for an impermeable interface crack, D2
0=B2

0=0 and
the ESIF can be expressed as

K =��b − a�
2

��32

 ,D2


,B2

�T �49�

The energy release rate for this interface crack reads

Gimp =
1

4
KTHK =

�b − a�
8

�H11��32

 �2 + H22�D2


�2 + H33�B2

�2

+ 2H21�32

 D2


 + 2H31�32

 B2


 + 2H32D2

B2


� �50�

For a permeable interface crack, �e=�m=0, the D2
0 and B2

0 are
given by Eq. �48�, and the ESIF can be expressed as

K =��b − a�
2

��32

 ,�D2

0,�B2
0�T �51�

The corresponding energy release rate reads

Gperm =
�b − a�

8

det�H�

det�Ĥ�
��32


 �2 �52�

where the matrix Ĥ, a principal submatrix of H, is

Ĥ = �H22 H23

H23 H33
� �53�

and det� � is the determinant of a square matrix.
One interesting observation from Eq. �52� is that, though the

energy release rate, G, is independent of the applied electric-
magnetic load, it is affected by electric-magnetic properties of the
two constituents of the bimaterial media.

4 Numerical Results
In this section, the influence of the material property mis-

matches between the two constituents of the bimedia and the ef-

fects from magneto-electric coupling on the interface crack
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growth behavior will be demonstrated by some numerical results.
The basic data for the material properties selected here are similar
to those in �6�. These constants read as c44

I =43.7 GPa; e15
I

=8.12 C /m2; �11
I =7.86�10−9 C/Vm; �11

I =0.0; �15
I

=165.0 N/Am; �11
I =180.5�10−6 Ns2/C2, for the upper medium

�medium “I”�; and c44
II =44.6 GPa; e15

II =3.48 C/m2; �11
II =3.42

�10−9 C/Vm; �11
II =0.0; �15

II =385.0 N/Am; �11
II =414.5

�10−6 Ns2/C2, for the lower medium �medium “II”�.
Figures 2 and 3 present the influences of the bimaterial property

mismatches c44
II /c44

I ,�11
II /�11

I , and �11
II /�11

I on �D2
0 and

�B2
0, which relate to the magneto-electric field, D2

0 and B2
0, inside

the interface crack by Eq. �17�. One may easily see from Fig. 2
that the electric displacement �D2

0 decreases as the degree of an-
isotropy of these two constituents of the bimedia, defined by
c44

II /c44
I , increases, while it increases as the electric permittivity

ratio, �11
II /�11

I , increases. But it practically does not change as the
magnetic permeability ratio, �11

II /�11
I , increases. The magnetic

induction field �B2
0 decreases as cII /cI and �11

II /�11
I increase,

while it increase as �11
II /�11

I increases, as shown in Fig. 3. One can

Fig. 2 �D2
0 versus the bimaterial properties

0
Fig. 3 �B2 versus the bimaterial properties
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also see the �D2
0 and �B2

0 do not vary with the increase of

c44
II /c44

I ,�11
II /�11

I , and �11
II /�11

I after they reach some value.
Figure 4 shows the influence on the energy release rate, G, of

the mismatch of the degree of anisotropy for the bimaterial media
under pure mechanical tension. The G decreases as the c44

II /c44
I

increase, both for permeable and impermeable interface cracks. It
can also be seen that when c44

II /c44
I reaches some value �around

12.5 for this bimedia�, the G almost does not vary with the in-
crease in the mismatch on c44 between the two constituents of the
bimaterial media. Another interesting result observed from this
figure is that for a given �23, Gperm is larger than Gimp. This
observation shows that the electric-magnetic field inside the inter-
face crack may have an interaction with the stress field inside the
bimaterial system, thus it has an influence on the propagation
behavior of the interface crack. This observation may also suggest
that the design of a piezo-electro-magneto-elastic bimaterial sys-
tem based on a permeable assumption is more conservative than
based on impermeable assumption.

Figures 5–7 show the influences on G from the directions of
applied D2


 and B2

, respectively. Figure 5 shows the results for

loading D2

 and �32, Fig. 6 for B2


 and �32, while Fig. 7 is for
combined loading D2


 , B2

, and �32. In these figures, a negative G

can be observed under certain mechanically applied load, namely
�32

rtd, for a given D2

 and/or B2


. These negative values on G may
suggest that the applied electric-magnetic loading would retard the
propagation of an interface crack in piezo-electro-magnetic bima-
terials, a result which was also found in Ref. �12� for cracks in
monolithic piezo-electro-magnetic materials. The �32

rtd varies as
the direction of D2


 or B2

 revises. One can also observe that there

exists a direction in which the combined loading applied would
make �32

rtd reach its maximum and minimum value.
Figures 8 and 9 more clearly show the retarding effects, respec-

tively, of �11
II /�11

I and �11
II /�11

I on the energy release rate G under
pure loading D2


 or B2

. In these two pictures, the value of G is

always negative since the applied mechanical loading �32 is zero.
The G increases as �11

II /�11
I or �11

II /�11
I increases, a result consist

with the observation in Figs. 11 and 12.
Plotted in Figs. 10–12 are, correspondingly, the influences of

c44
II /c44

I , �11
II /�11

I , and �11
II /�11

I on the energy release rate, G, under
combined electric, magnetic, and mechanical loading for an im-

Fig. 4 Energy release rate, G, versus the stiffness ratio
c44

II /c44
I , for an interface crack under pure mechanical loading
permeable interface crack. The plotting in solid line is for the
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positive direction in D2

 and B2


, the dashed line is for revised
direction in D2


 and B2

. The G decreases as the c44

II /c44
I increases

and keeps almost unchanged when c44
II /c44

I reaches a certain value
for both applied loading directions, as shown in Fig. 10. On the
contrary, the G increases as the �11

II /�11
I and �11

II /�11
I increase,

respectively. The observations in these figures may suggest that a
reasonable selection in the mechanical and electric-magnetic
properties for the two constituents of a bimaterial media may
lower the energy release rate, making this bimedia much safer
with regard to propagation of cracks.

Finally, it should be mentioned that the important contribution
of our paper is the novel procedure, which has been developed to
solve for the electric-magnetic fields inside an interface crack in a
general bimaterial. The exact agreement of the results from this
method with the results from the mapping method for the special
case of homogeneous material �i.e., no bimaterial� in the litera-
ture, which, again, is the only case solved in the literature, pro-
vides validity for our “energy method” approach. It should be

Fig. 5 The effect of the direction of the applied D2 on the en-
ergy release rate, G, for an impermeable interface crack

Fig. 6 The effect of the direction of the applied B2 on the en-

ergy release rate, G, for an impermeable interface crack
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noted at this point that the contribution of the electric-magnetic
fields inside a crack is very important for the devices being made
of piezo-magneto-electro-elastic materials, since these fields may
interfere with the desirable signals of electric-magnetic fields, like
in broadband detecting devices. The results of our study could
offer tentative guidelines for the damage-tolerant design of the
devices.

5 Conclusions
In the present paper, the mode III interface crack in dissimilar

piezo-magneto-electro-elastic bimaterial media is investigated in
Stroh’s formulism. In this study, the electric-magnetic field inside
the interface crack is also considered and an “energy method” is
proposed for obtaining the solution to this electric-magnetic field.
Two types of interface cracks, namely permeable and imperme-
able cracks, are addressed. All the solutions are derived in closed
form. The following conclusions can be reached from the results
in this study:

1. The “energy method” is a very effective way to derive a
solution to the electric-magnetic field inside a crack, thus

Fig. 7 The effect of the directions of the combined applied B2
and D2 on the energy release rate, G, for an impermeable inter-
face crack

Fig. 8 Energy release rate, G, versus the electric permittivity
ratio, �11

II /�11
I , for an impermeable interface crack under pure D0

�

loading
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solving the whole interface crack problem when the electric-
magnetic field inside a crack is taken into account.

2. The mismatches of c44, �11, and �11 between the two con-
stituents of a bimaterial media have strong effects on the
potential propagation of a mode III interface crack. There
exists an optimal selection on c44, �11, and �11 that would
minimize the energy release rate for this mode III interface
crack.

3. The directions of the applied loading D2

 and B2


 also have
an effect on the possible growth of the interface crack in a
piezo-electro-magneto-elastic bimaterial media.

4. The applied electric and/or magnetic loading D2

 and B2




usually retard the propagation of the mode III interface
crack.
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Fig. 9 Energy release rate, G, versus the magnetic permeabil-
ity ratio, �11

II /�11
I , for an impermeable interface crack under

pure B0
� loading

Fig. 10 Energy release rate, G, versus the stiffness ratio,
c44

II /c44
I , for an impermeable interface crack under combined ap-
plied loading
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Appendix: Contour Integral for �„z…�
The method used here can be viewed as the generalization of

the technique in �16, 110, and 70� which is for a single equation.
Let � be a contour which includes the arc ab, and let this contour
shrink into the arc ab. Then for q�x1� constant

�
�

�X����−1N−1

� − z
d� =�

ab

�X+�x1��−1N−1

x1 − z
dt +�

ba

�X−�x1��−1N̄

x1 − z
dx1

=�
ab

�X+�x1��−1N−1

x1 − z
dx1 −�

ab

�X−�x1��−1N−1

x1 − z
dx1

�A1�
From Eq. �32�, one could have

X−�x1� = − N̄−1NX+�x1�, a 	 x1 	 b �A2�
Substituting Eq. �A2� into �A1� leads

Fig. 11 Energy release rate, G, versus the electric permittivity
ratio, �11

II /�11
I , for an impermeable interface crack under com-

bined applied loading

Fig. 12 Energy release rate, G, versus the magnetic perme-
ability ratio, �11

II /�11
I , for an impermeable interface crack under
combined applied loading
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�
�

�X����−1N−1

� − z
d� =�

ab

�X+�x1��−1N−1�I + N̄N−1�
x1 − z

dx1 �A3�

Then,

�
ab

�X+�x1��−1N−1

x1 − z
dx1 =�

�

�X����−1N−1�I + N̄N−1�−1

� − z
d�

=�
�

�X����−1�N + N̄�−1

� − z
d� �A4�

Since

N = N̄ = H−1 �A5�
then,

���z� =
1

2i
X�z��

ab

�X+�x1��−1N−1�ip�
x1 − z

dx1

= diag�1 −
z − �a + b�/2

��z − a��z − b�
�H

2
�ip� �A6�
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Hygrothermal Stresses in
Unsymmetric Laminates
Disturbed by Elliptical Holes
Since the composite laminates are now in widespread use, many coupling phenomena
within the composite laminates are widely focused in the world. One of those is the
problem of stretching-bending coupling under hygrothermal environment. Because of the
hygrothermal stress concentration, the understanding of hygrothermal effects on holes in
laminates becomes important for the practical engineering design. However, due to math-
ematical infeasibility, most of the analytical solutions presented in literature are for
two-dimensional problems or just for mechanical loading conditions, not for general
composite laminates under hygrothermal environment. In order to establish a systematic
analytical approach, in this study by extending the Stroh formalism for two-dimensional
linear anisotropic elasticity and the Stroh-like formalism for coupled stretching-bending
analysis of composite laminates, we develop an extended Stroh-like formalism for the
coupled stretching-bending analysis under hygrothermal environment. By using the ex-
tended Stroh-like formalism developed in this paper, the explicit solutions for an un-
bounded laminate, symmetric or unsymmetric, disturbed by an elliptical hole subjected to
uniform heat flow and moisture transfer in the x1-x2 plane or x3 direction are now
obtained. With these solutions three typical numerical examples are illustrated and com-
pared by ANSYS finite element software package. �DOI: 10.1115/1.2074708�
1 Introduction
Composite laminates are increasingly being used not only in

traditional areas like aerospace, but also in many engineering ap-
plications. Some of these applications are the structures under
hygrothermal environment. Although the hygrothermal effects on
holes in laminates have been widely discussed, due to mathemati-
cal infeasibility most of the analytical solutions found in the lit-
erature are for two-dimensional problems or for mechanical load-
ing conditions, for isotropic materials, or for special laminates
�1–3�, not for the general composite laminates under hygrothermal
environment. For a unidirectional lamina the coefficients of ther-
mal and moisture expansion, like its other properties, change with
direction. Thus, the hygrothermal changes result in unequal strains
in the longitudinal and transverse directions. Hygrothermal strains
do not produce a resultant force or moment when the body is
completely free to expand, bend, and twist. However, for a com-
posite laminate each individual lamina is not completely free to
deform. The lamina stresses are therefore induced by the con-
straints placed on its deformation by adjacent lamina �4,5�. Like
the cases of mechanical loading, the existence of holes in lami-
nates will cause high stress concentration around holes under hy-
grothermal environment. Moreover, the unsymmetry of laminates
will cause coupling between stretching and bending, which may
complicate the analysis. Due to the designable characteristics of
composite laminates, sometimes the engineering designers want to
utilize the coupling effects to do something that cannot be
achieved by using metallic or symmetric laminates. Thus, the
study of hygrothermal stress analysis in unsymmertic laminates
becomes important for practical engineering design.

Recently, we developed a Stroh-like formalism for coupled

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received March 23, 2005; final manu-
script received June 28, 2005. Review conducted by Z. Suo. Discussion on the paper
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Applied
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of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted
until four months after final publication in the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
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stretching-bending analysis of composite laminates �6� by extend-
ing the Stroh formalism for two-dimensional linear anisotropic
elasticity �7,8� and successfully solved the hole problems in gen-
eral composite laminates �9�. It is expected that with the help of
our Stroh-like formalism, we may easily solve the corresponding
hygrothermal problems of holes in general composite laminates.
Like the extension of Stroh formalism to anisotropic thermoelas-
ticity �3�, we extend our Stroh-like formalism to the hygrothermal
stress analysis of laminates in this paper. By using this formalism,
the general solutions for hygrothermal stresses in unsymmetric
laminates disturbed by an elliptical hole subjected to uniform heat
flow and moisture transfer in the x1-x2 plane and x3 direction are
now obtained analytically. To illustrate our exact solutions, three
numerical examples discussing the above hygrothermal effects of
the holes in unsymmetric laminates are presented in this paper.
The ANSYS finite element software package is also used to com-
pare both numerical examples, which shows our present solutions
are simple and correct.

2 Basic Equations
In a fixed rectangular coordinate system xi , i=1,2 ,3, let Ui,

�ij, eij, T, H, qi, and mi be, respectively, displacement, stress,
strain, change in temperature, change in moisture content, heat
flux, and moisture transfer. If the coupling terms between the elas-
tic deformation, heat conduction, and moisture transport are ne-
glected, the heat conduction, the moisture diffusion, the strain-
displacement relation, the constitutive law, the force, heat and
moisture equilibrium equations for linear anisotropic elastic ma-
terials under static loading, and small deformation conditions can
be written as �10�

qi = − kij
t T,j, mi = − kij

h H,j, eij =
1

2
�Ui,j + Uj,i� ,

�ij = Cijkseks − Cijks�
t T − Cijks�

h H ,
ks ks
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�ij,j = 0, qi,i = 0, mi,i = 0, i, j,k,s = 1,2,3, �2.1�

where repeated indices imply summation, a subscript comma
stands for differentiation, and Cijks , kij

t ,kij
h and �ij

t ,�ij
h are,

respectively, the elastic constants, heat conduction coefficients,
moisture diffusion coefficients, and the coefficients of thermal and
moisture expansion. Cijks are assumed to be fully symmetric, i.e.,
Cijks=Cjiks=Cijsk=Cksij and are required be positive definite due
to the positiveness of strain energy. kij

t , kij
h , �ij

t , and �ij
h are also

assumed to be symmetric, i.e., kij
t =kji

t , kij
h =kji

h , �ij
t =� ji

t , and �ij
h

=� ji
h .

Equation �2.1� constitutes 23 partial differential equations in
terms of three coordinate variables xi , i=1,2 ,3. If the deforma-
tions are considered to be dependent upon two coordinate vari-
ables x1 and x2 only, a general solution satisfying these 23 equa-
tions can be found by following Stroh formalism for two-
dimensional linear anisotropic thermoelasticity �3,8�.

In this paper we consider a composite laminate composed of
layers of various materials. Each layer is assumed to be made of
anisotropic materials. If the laminate thickness is smaller than its
other dimensions, according to Kirchhoff’s assumptions the dis-
placement, temperature, and moisture content may be assumed to
vary linearly through laminate thickness as

Ui�x1,x2,x3� = ui�x1,x2� + x3�i�x1,x2�, i = 1,2,

U3�x1,x2,x3� = w�x1,x2� ,

T�x1,x2,x3� = T0�x1,x2� + x3T*�x1,x2� ,

H�x1,x2,x3� = H0�x1,x2� + x3H*�x1,x2� , �2.2a�

where

�1 = − w,1, �2 = − w,2. �2.2b�

�u1 ,u2 ,w�, T0 and H0 are the middle surface displacements, tem-
perature, and moisture content, and �i , i=1,2, are the negative of
the slope of the middle surface in the x1 and x2 directions. T* and
H* are the rates of changes in temperature and moisture content.

Based upon the assumptions given in Eqs. �2.2� and the 23
basic Eqs. �2.1� for anisotropic materials under hygrothermal con-
dition, we may now write down the kinematic relations, the con-
stitutive laws, and the equilibrium equations for hygrothermal
stress analysis of composite laminates as follows:

q̆i = − Kij
t T,j

0 − Kij
*tT,j

* − Ki3
t T*, m̆i = − Kij

h H,j
0 − Kij

*hH,j
* − Ki3

h H*,

�ij =
1

2
�ui,j + uj,i�, �ij =

1

2
��i,j + � j,i� ,

Nij = Aijkl�kl + Bijkl�kl − Aij
t T0 − Aij

h H0 − Bij
t T* − Bij

h H*,

Mij = Bijkl�kl + Dijkl�kl − Bij
t T0 − Bij

h H0 − Dij
t T* − Dij

h H*,

Nij,j = 0, Mij,ij + p = 0, Qi = Mij,j, q̆i,i + q = 0,

m̆i,i + m = 0, i, j,k,l = 1,2, �2.3�

where �ij and �ij denote the midplane strain and plate curvature;
Nij, Mij, and Qi denote the stress resultants, bending moments and
shear forces; q̆i and m̆i denote the heat flux resultant and moisture
transfer resultant, Aijkl, Bijkl, and Dijkl are, respectively, the exten-
sional, coupling and bending stiffness tensors; Aij

t ,Bij
t ,Dij

t and
Aij

h ,Bij
h ,Dij

h are the corresponding tensors for the thermal and
moisture expansion coefficients; Kij

t ,Kij
h and Kij

*t ,Kij
*h are the coef-

ficients related to the heat conduction and moisture diffusion co-
efficients; p, q, and m are the lateral distributed load, heat flux,
and moisture concentration transfer applied on the laminates.

Their definitions are
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Nij =�
−h/2

h/2

�ijdx3, Mij =�
−h/2

h/2

�ijx3dx3, Qi =�
−h/2

h/2

�i3dx3,

q̆i =�
−h/2

h/2

qidx3, m̆i =�
−h/2

h/2

midx3,

Aijks =�
−h/2

h/2

Cijksdx3, Bijks =�
−h/2

h/2

Cijksx3dx3,

Dijks =�
−h/2

h/2

Cijksx3
2dx3,

Aij
t =�

−h/2

h/2

Cijks�ks
t dx3, Bij

t =�
−h/2

h/2

Cijks�ks
t x3dx3,

Dij
t =�

−h/2

h/2

Cijks�ks
t x3

2dx3,

Aij
h =�

−h/2

h/2

Cijks�ks
h dx3, Bij

h =�
−h/2

h/2

Cijks�ks
h x3dx3,

Dij
h =�

−h/2

h/2

Cijks�ks
h x3

2dx3,

Kij
t =�

−h/2

h/2

kij
t dx3, Kij

*t =�
−h/2

h/2

kij
t x3dx3, Kij

h =�
−h/2

h/2

kij
h dx3,

Kij
*h =�

−h/2

h/2

kij
h x3dx3, �2.4�

in which h is laminate thickness. Note that like Cijks, kij
t , kij

h , �ij
t ,

and �ij
h , according to the definitions given in Eq. �2.4� Aijkl, Bijkl,

Dijkl, Aij
t , Bij

t , Dij
t , Aij

h , Bij
h , Dij

h , Kij
t , Kij

h , Kij
*t, and Kij

*h still preserve
the symmetry property.

3 Extended Stroh-Like Formalism
Since the basic equations stated in Eqs. �2.2� and �2.3� are quite

general, it is not easy to find a solution satisfying all these basic
equations. In the following, we consider two special cases that
occur frequently in engineering applications. One is the case that
temperature and moisture distributions depend on x1 and x2 only,
i.e., T*=H*=0, and the other is the case that temperature and
moisture distributions depend on x3 only, i.e., T=T0+x3T* and
H=H0+x3H* in which T0, T*, H0, and H* are constants indepen-
dent of x1 and x2.

3.1 Case 1: Temperature and Moisture Content Depend
on x1 and x2 Only. If the temperature and moisture content are
assumed to depend on x1 and x2 only and the lateral distributed
load, heat flux, and moisture concentration transfer applied on the
laminates are neglected, i.e., T*=H*= p=q=m=0, the basic equa-
tions stated in Eq. �2.3� can be simplified as

q̆i,i = − Kij
t T,ij = 0, m̆i,i = − Kij

h H,ij = 0,

Nij,j = Aijkluk,lj + Bijkl�k,lj − Aij
t T,j − Aij

h H,j = 0,

Mij,ij = Bijkluk,lij + Dijkl�k,lij − Bij
t T,ij − Bij

h H,ij = 0, i, j,k,l = 1,2.

�3.1�
By following the steps described in �3� for Stroh formalism of

two-dimensional thermoelasticity and in �6� for Stroh-like formal-
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ism of coupled stretching-bending analysis of composite lami-
nates, we can find a general solution satisfying the basic Eqs. �3.1�
and call it the extended Stroh-like formalism. The solution is

T = 2 Re�gt��zt��, H = 2 Re�gh��zh�� ,

q̆i = − 2 Re��Ki1
t + �tKi2

t �gt��zt��, m̆i = − 2 Re��Ki1
h + �hKi2

h �gh��zh�� ,

ud = 2 Re�Af�z� + ctgt�zt� + chgh�zh�� ,

�d = 2 Re�Bf�z� + dtgt�zt� + dhgh�zh�� , �3.2a�

where

ud = �u

�
	, �d = ��

�
	, u = �u1

u2
	, � = ��1

�2
	 ,

� = ��1

�2
	, � = ��1

�2
	 , �3.2b�

A = �a1 a2 a3 a4�, B = �b1 b2 b3 b4� , �3.2c�

f�z� = 

f1�z1�
f2�z2�
f3�z3�
f4�z4�

�, zk = x1 + 	kx2, k = 1,2,3,4, �3.2d�

zt = x1 + �tx2, zh = x1 + �hx2. �3.2e�

In the above, Re stands for the real part of a complex number and
the prime ���� denotes differentiation with respective to its argu-
ment. ud and �d are the generalized displacement and stress func-
tion vectors. �1 ,�2 and �1 ,�2 are the stress functions related to
the stress resultants Nij, shear forces Qi, effective shear forces Vi
and bending moments Mij by

Ni1 = − �i,2, Ni2 = �i,1,

Mi1 = − �i,2 − 
i1�, Mi2 = �i,1 − 
i2� ,

Q1 = − �,2, Q2 = �,1, V1 = − �2,22, V2 = �1,11, �3.3a�

where

� =
1

2
�k,k =

1

2
��1,1 + �2,2� , �3.3b�

and 
ij is the permutation tensor defined as


11 = 
22 = 0, 
12 = − 
21 = 1. �3.3c�

fk�zk� , k=1,2 ,3 ,4, gt�zt�, and gh�zh� are six holomorphic func-
tions of complex variables zk, zt, and zh, which will be determined
by the boundary conditions set for each particular problem. 	k, �t,
�h and �ak ,bk�, �ct ,dt�, �ch ,dh� are, respectively, the material ei-
genvalues and eigenvectors, which can be determined by the fol-
lowing eigenrelation

K11
t + 2�tK12

t + �t
2K22

t = 0, K11
h + 2�hK12

h + �h
2K22

h = 0,

�3.4a�

N� = 	�, N�t = �t�t + �t, N�h = �h�h + �h, �3.4b�

where N is a 88 real matrix which is the fundamental elasticity
matrix for coupled stretching-bending analysis; �, �t, and �h are
three 81 complex vectors which are composed of the material
eigenvectors. These matrices and vectors are composed of some

well-defined submatrices and vectors and are defined by
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N = �N1 N2

N3 N1
T , � = �a

b
	, �t = �ct

dt
	, �h = �ch

dh
	 ,

�3.5�

in which the superscript T denotes the transpose of a matrix. De-
tailed definitions of the submatrices N1, N2, and N3 have been
given in �6� and are listed in the Appendix A for the readers’
convenience. �t and �h are two 81 complex vectors related to
the elastic constants and the coefficients of thermal and moisture
expansion, whose detailed expressions can be obtained by follow-
ing either the displacement formalism or mixed formalism de-
scribed in �6�. They are

�t = �L2 +
1

2
J2�−1��1

t

�2
t 	 = − It�0 �Nm�2

I �Nm�1
T ��̃1

t

�̃2
t 	 , �3.6a�

where

�1
t = ��A1

t

�B1
t 	, �2

t = ��A2
t

�B2
t 	, �̃1

t = ��̃A1
t

�̃B2
t 	, �̃2

t = � �̃A2
t

− �̃B1
t 	 ,

�3.6b�

and

�Ai
t = �A1i

t

A2i
t 	, �Bi

t = �B1i
t

B2i
t 	, �̃Ai

t =�Ã1i
t

Ã2i
t 	 ,

�̃Bi
t =�B̃1i

t

B̃2i
t 	, i = 1,2, �3.6c�

Ãij
t = Aij

t − B̃ijklBkl
t , B̃ij

t = D̃ijklBkl
t , �3.6d�

in which B̃ijkl and D̃ijkl are the tensor notations of B̃ and D̃ defined
in Eq. �A3�. Same expressions as Eq. �3.6� are defined for �h only
by replacing the subscript or superscript from t to h. Detailed
definitions of L2 , J2 , It , �Nm�1, and �Nm�2 have also been given
in �6� and are listed in Appendix A. The second equality of Eq.
�3.6a� comes from the equivalence between the displacement for-
malism and mixed formalism discussed in �6�.

By using the relations given in Eq. �3.3�, the stress resultants
Nn ,Ns ,Nns, bending moments Mn ,Ms ,Mns, shear forces Qn ,Qs
and effective shear forces Vn ,Vs in the tangential-normal �s-n�
coordinate system, can be obtained directly from the stress func-
tions and their relations as �9�

Nn = nT�,, Nns = sT�,s = − nT�,n, Ns = − sT�,n,

Mn = nT�,, Mns = sT�,s − � = − nT�,n + �, Ms = − sT�,n,

Qn = �,s, Qs = − �,n, Vn = �sT�,s�,s, Vs = − �nT�,n�,n,

�3.7a�

where

� =
1

2
�sT�,s + nT�,n� , �3.7b�

and

sT = �cos �,sin ��, nT = �− sin �,cos �� . �3.7c�

3.2 Case 2: Temperature and Moisture Content Depend
on x3 Only. If the temperature and moisture content depend on x3
only, the distribution assumed in the third and fourth equations of

Eq. �2.2a� can be rewritten as
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T = T0 + x3T*, H = H0 + x3H*, �3.8�

where T0, T*, H0, and H* are real constants independent of x1 and
x2. With this assumption, the basic Eqs. �2.3� can be simplified as

q̆i = − Ki3
t T*, m̆i = − Ki3

h H*,

Nij = Aijkluk,l + Bijkl�k,l − Aij
t T0 − Aij

h H0 − Bij
t T* − Bij

h H*,

Mij = Bijkluk,l + Dijkl�k,l − Bij
t T0 − Bij

h H0 − Dij
t T* − Dij

h H*,

Nij,j = Aijkluk,lj + Bijkl�k,lj = 0,

Mij,ij = Bijkluk,lij + Dijkl�k,lij = 0,

Qi = Mij,j, i, j,k,l = 1,2, �3.9�

and q̆i,i=0 and m̆i,i=0 are satisfied automatically. Note that the
mathematical expressions of the governing equations written in
Eq. �3.9�, i.e., Nij,j =0 and Mij,ij =0 in terms of uk and �k, are
exactly the same as those of the nonhygrothermal problems dis-
cussed in �6�. Therefore, the general solution for uk and �k should
be exactly the same as that presented in �6�. Substituting this
solution into the third and fourth equations of Eq. �3.9� and fol-
lowing the steps of �6�, we can find the solution for Nij and Mij.
The final solution expressed in the form of Stroh-like formalism
can then be written as

ud = 2 Re�Af�z�� ,

�d = 2 Re�Bf�z�� − x1�2 + x2�1, �3.10a�

where

�i = �i
tT0 + �i

hH0 + �i
*tT* + �i

*hH*, i = 1,2. �3.10b�

In the above, �i
t and �i

h have been defined in �3.6b�, whereas
�i

*t are defined by

�i
*t = ��Bi

t

�Di
t 	, �Bi

t = �B1i
t

B2i
t 	, �Di

t = �D1i
t

D2i
t 	, i = 1,2,

�3.11�

and same expressions as Eq. �3.11� are defined for �i
*h only by

replacing superscript from t to h.

Fig. 1 Unsymmetric laminate weakened by a
and moisture transfer in x1-x2 plane
With the general solution shown in Eq. �3.10� for the general-
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ized displacement and stress function vectors, the middle surface
displacements ui and slopes �i can be obtained directly from the
components of the generalized displacement vector ud. As to the
stress resultants Nij, shear forces Qi, effective shear forces Vi, and
bending moments Mij, we can utilize the relations shown in Eq.
�3.3�. Moreover, all the relations for the nonhygrothermal prob-
lems such as the eigenrelation �first equation of �3.4b��, force
relation �3.7�, and those shown in Eqs. �A1�–�A3� are all valid for
the present case.

Note that unlike the general solution shown in Eq. �3.2� for case
1, the general solution shown in Eq. �3.10� for case 2 does not
include the expressions for temperature, moisture content, heat
flux resultant and moisture transfer since they have been given in
the first and second equations of Eqs. �3.8� and �3.9� as known
linear distributions and constant flows. In other words, for case 1
to find the plane distributions of T, H, q̆i, and m̆i we need to
prescribe their associated boundary conditions, while for case 2
their distributions are assumed to be known and hence the bound-
ary conditions for these physical quantities will not be stated in
the related problems.

4 Hole Problems

4.1 Case 1: Uniform Heat Flow and Moisture Transfer in
x1-x2 Plane. In an infinite composite laminate, heat q̂ and mois-

ture m̂ is flowing uniformly in the direction of angle �̂ clockwise
from the positive x1 axis �Fig. 1�. The uniform steady heat and
moisture flow is disturbed by the presence of an insulated elliptic
hole whose boundary is given by

x1 = a cos �, x2 = b sin � , �4.1�

where 2a, 2b are the length of the major and minor axes of the
ellipse and � is a real parameter. If the hole is assumed to be free
of tractions, the boundary conditions for this problem can be writ-
ten as,

q̆i → q̂i, m̆i → m̂i, Nij → 0,

Mij → 0, i, j = 1,2, at infinity, �4.2a�

˘ ˘

elliptical hole subjected to uniform heat flow
n
qn = mn = 0, Nn = Nns = 0,
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Mn = Vn = 0 along the hole boundary, �4.2b�

where q̆n and m̆n are the heat flux and moisture transfer in the
direction of n which is normal to the surface of the elliptic hole.
From the relations �3.7� we know that the traction boundary con-
dition given in Eq. �4.2a� and �4.2b� can be expressed in terms of
the generalized stress function vector �d as

�d → 0, at infinity,

�d,s = 0, along the hole boundary. �4.3�
To consider the heat flux and moisture transfer boundary condi-
tions given in Eq. �4.2b�, we now use the coordinate transforma-
tion and employ the third and fourth equations of �3.2a� and Eq.
�3.4a� to get

q̆n = − q̆1 sin � + q̆2 cos � = 2Kt Im��cos � + �t sin ��gt��zt�� ,

m̆n = − m̆1 sin � + m̆2 cos � = 2Kh Im��cos � + �h sin ��gh��zh�� ,

�4.4�

where Im stands for the imaginary part; Kt=K22
t ��t− �̄t� /2i and

Kh=K22
h ��h− �̄h� /2i are real constants and the overbar denotes the

complex conjugates; � is the angle between the x1 axis and the
tangent direction s �Fig. 1� and is related to � by

� cos � = a sin �, � sin � = − b cos � , �4.5a�

in which

� = �a2 sin2 � + b2 cos2 � . �4.5b�
Because the mathematical forms of the general solutions �3.2�

and boundary conditions �4.2� together with the relations
�4.3�–�4.5� are the same as those of the corresponding two-
dimensional problems, by following the steps described in �3� the
unknown functions in the general solution �3.2� can be assumed to
be

f�z� = �
k=0

2

�fk�z�,	����ATqka + BTqkb� ,

gt�zt� = �
k=0

2

ĝk
t fk�zt,�t�, gh�zh� = �

k=0

2

ĝk
hfk�zh,�h� , �4.6a�

where the angular bracket �� stands for the diagonal matrix in
which each component is varied according to its subscript �, for
example., �z��=diag.�z1 ,z2 ,z3 ,z4�, and

f0�z,	� =
1

2
z2,

f1�z,	� =
1

a + i	b
�1

2
z2 −

1

2
z�z2 − �a2 + 	2b2�	 ,

f2�z,	� =
a − i	b

2
log�z + �z2 − �a2 + 	2b2�� , �4.6b�

and

ĝ1
t = ĝ2

t , ĝ1
h = ĝ2

h. �4.6c�

The problem now reduces to the determination of the unknown
constants qka , qkb , ĝk

t and ĝk
h , k=0,1 ,2, which should satisfy the

boundary conditions set in Eq. �4.2� with useful relations given in
Eqs. �4.3� and �4.4�. Substituting the assumed functions �4.6� into
the general solutions �3.2� and the boundary conditions �4.2�, and
following the steps described in �3,11�, we get

ĝ0
t =

1

2K2 ��K12
t + iKt�q̂2 − K22

t q̂1� ,

t
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ĝ0
h =

1

2Kh
2 ��K12

h + iKh�m̂2 − K22
h m̂1� ,

ĝ1
t = −

1

2Kt
�bq̂1 + iaq̂2�, ĝ1

h = −
1

2Kh
�bm̂1 + iam̂2� , �4.7a�

q0a = − 2 Re�ĝ0
t dt + ĝ0

hdh� ,

q0b = 2N3
�−1� Re�ĝ0

t �N1
T − �tI�dt + ĝ0

h�N1
T − �hI�dh� + k*m�0� ,

�4.7b�

�q1b

q1a
	 = 2�aÑ − bN�−1 Im�L−1�ST − iI�d1

*

d1
* 	 ,

�q2b

q2a
	 = 2�aÑ + bN�−1 Im�ĝ1

t �a − ib�t��t + ĝ1
h�a − ib�h��h� ,

�4.7c�

where

d1
* = ĝ1

t �a + ib�t�dt + ĝ1
h�a + ib�h�dh. �4.8�

In Eq. �4.7�, S and L are real matrices and are generally called
Barnett-Lothe tensors in two-dimensional problems whose de-
tailed definitions can be found in �8� and are listed in Appendix B;

Ñ is the average fundamental matrix whose definition is also
listed in Appendix B; the arbitrary constant k* can be determined
by substituting Eq. �4.7b� into the following equation which
comes from the satisfaction of the first equation in Eq. �4.3� �11�

N1
T�2�q0a + N3

�2�q0b + 2 Re�ĝ0
t �t

2dt + ĝ0
h�h

2dh� = 0 , �4.9�

where

N1
T�2� = N3N2 + N1

TN1
T, N3

�2� = N3N1 + N1
TN3, �4.10�

and m�0�= �0 1 0 0�T.
One should note that the inverse matrix of N3 does not exist

because it is a singular matrix �12,13�. The pseudoinverse matrix
N3

�−1� shown in the second equation in Eq. �4.7b� is defined as

N3
�−1�N3 = N3N3

�−1� = I3, �4.11a�

where

I3 = �
1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1
� . �4.11b�

The general solution �3.2� together with Eqs. �4.6�–�4.10� now
provides us the complete full field solution for the present prob-
lem. With this solution any mechanical responses inside the body
can be obtained directly from the relations provided in Secs. 2 and
3. In engineering application, one is usually interested in the hoop
stress along the hole boundary. According to the experience of
two-dimensional problems, by using the identities developed in
the literature for converting complex form to real form �8�, it is
usually possible to get real form solutions for hoop stress. From
Eq. �3.7�, we see that the real form solution of the hoop stress can
be obtained directly if we have the real form solution for �d,n, i.e.,
��,n ,�,n�. Note that we do not need to calculate �,s and �,s along
the hole boundary since they are identical to zero when the second
equation in the boundary condition �4.3� is satisfied in our solu-
tion. Again, by following the steps described in �3�, the explicit

form solution of �d,n for the present case is obtained as
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�d,n =
1

Kt
�bq̂1 cos � + aq̂2 sin ��� 2

t ��� +
1

Kh
�bm̂1 cos �

+ am̂2 sin ��� 2
h��� +

1

�
ˆG3���Re�ie−2i��ĝ1

t �a + ib�t��̃ 2
t*

+ ĝ1
h�a + ib�h��̃ 2

h*��‰ , �4.12a�

where

G3��� = − N3���L−1. �4.12b�

In Eq. �4.12�, N3��� is one of the submatrices of the generalized
fundamental matrix N��� whose definition can be found in �8�;
� 2

t ���, � 2
h���, �̃ 2

t*, and �̃ 2
h* are vectors related to thermal and

moisture moduli and their detailed definitions are given in Appen-
dix C.

4.2 Case 2: Uniform Heat Flow and Moisture Transfer in
x3 Direction. All the conditions are the same as case 1 except that
the heat q̂ and moisture m̂ is now flowing uniformly in the thick-
ness direction instead of plane direction. This may occur when the
temperature and moisture content on the top and bottom surfaces
of the laminate are different, for example, Tu and Hu on the top
surface and Tl and Hl on the bottom surface. If the temperature
and moisture content are assumed to vary linearly as shown by
Eq. �3.8�, we have

T0 =
Tl + Tu

2
, H0 =

Hl + Hu

2
, T* =

Tl − Tu

h
, H* =

Hl − Hu

h
.

�4.13�

By the first and second equations of Eq. �3.9�, the heat flux q̂ and
moisture transfer m̂ in the thickness direction are related to T* and
H* by

q̂ = − K33
t T*, m̂ = − K33

h H*, �4.14�
which are constant throughout the entire plate.

If the hole is assumed to be free of traction, the boundary con-
ditions for this problem can be written as

Nij → N̂ij, Mij → M̂ij, i, j = 1,2, at infinity,

Nn = Nns = 0, Mn = Vn = 0, along the hole boundary.

�4.15�

As stated in the last paragraph of Sec. 3, in Eq. �4.15� there is no
need to describe the boundary conditions of heat and moisture
flow as those shown in Eq. �4.2� for Case 1. The prescribed values

N̂ij and M̂ij are the stress resultants and bending moments induced
by the temperature and moisture which are related to T0, H0, T*,
and H* by



N̂11

N̂12

M̂11

M̂12

� = − �1, 

N̂12

N̂22

M̂12

M̂22

� = − �2, �4.16�

where �1 and �2 are given in Eq. �3.10b�. Note that Eq. �4.16� is
obtained by using Eq. �3.3� and �3.10� and knowing that no me-
chanical loading is applied in this problem.

From the relations �3.3�, �3.7�, and �4.16�, the boundary condi-
tions �4.15� can now be expressed in terms of the generalized
stress function vector �d as
�d → − x1�2 + x2�1, at infinity,
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�d,s = 0, along the hole boundary. �4.17�
By comparing the general solution �3.10� and boundary condition
�4.17� of this problem with those of nonhygrothermal problem
solved in �9�, without any further detailed derivation we can ob-
tain directly the solution for this problem as

ud = Re�A���
−1�B−1�a�2 − ib�1�� ,

�d = Re�B���
−1�B−1�a�2 − ib�1�� − x1�2 + x2�1, �4.18a�

where

�� =
z� + �z�

2 − a2 − 	�
2b2

a − i	�b
, � = 1,2,3. �4.18b�

Again, from Eq. �3.7� we see that the real form solution of the
forces and moments around the hole boundary can be obtained
directly if we have the solution for �d,n. By referring to the cor-
responding nonhygrothermal solutions obtained in �9�, without
any further detailed derivation we get

�d,n = cos ���1 + G1����2 +
b

a
G3����1 + sin ���2 − G1����1

+
a

b
G3����2 , �4.19�

where G3��� is defined in Eq. �4.12b� and

G1��� = N1
T��� − N3���SL−1. �4.20�

5 Numerical Examples
To show the generality of the analytical solutions obtained in

the last section, in the following examples several different kinds
of laminations, symmetric or unsymmetric, are considered. With-
out losing generality for simplicity all of them are composed of
four layers of graphite-epoxy fiber reinforced composite laminae.
The laminate contains a through-thickness elliptical hole and the
material properties of graphite-epoxy are

E1 = 181 GPa, E2 = 10.3 GPa, G12 = 7.17 GPa, �12 = 0.28,

�11
t = 0.02  10−6/ ° C, �22

t = 22.5  10−6/ ° C,

k11
t = 1.5 W/m ° C, k22

t = k33
t = 0.5 W/m ° C,

where E1 and E2 are the Young’s moduli in fiber and its transverse
directions, respectively; G12 is the shear modulus in the x1x2
plane; �12 is the major Poisson’s ratio; �11

t and �22
t are the coef-

ficients of thermal expansion in fiber and its transverse directions,
respectively; kii

t , i=1,2 ,3, are the coefficients of heat conduction.
All the other values of �ks

t , kij
t , i� j, are zero. Each lamina thick-

ness is 1 mm.
Based upon the material properties of graphite epoxy given

above for the 1–2 coordinate system �1 and 2, respectively, stand
for the fiber and transverse directions of each layer�, the material
properties in the x1-x2 coordinate system for each layer such as
Cijks, �ks

t , kij
t shown in the basic Eqs. �2.1�, can be calculated

through the transformation equations �4�. With these values, the
sectional properties Aijkl, Bijkl, Dijkl, Aij

t , Bij
t , Dij

t , Kij
t , and Kij

*t can
then be calculated through the definitions given in Eq. �2.4�. Note
that in the above we did not list the moisture properties because
for hygrothermal similarity only thermal problems are illustrated
in the following examples.

5.1 Example 1: Uniform Temperature Changes in a Uni-
directional Laminate. For the purpose of verification, we first
consider the simplest case that only in-plane stretching occurs
under uniform temperature changes in a unidirectional laminate.
Thus, our solutions can even be compared by using only plane

elements. Consider a �0�4 unidirectional laminate containing a
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Nn /Ns „b… Nns /Ns
through-thickness circular hole subjected to temperature change
from 0 to 100°C for the entire laminate, i.e., T0=100°C and T*

=0 in Eq. �3.8�. Figure 2 shows the comparison of resultant hoop
stress Ns around the hole boundary obtained by our solution and
three different element types PLANE42, SHELL99, and SOLID45 in the
commercial finite element software package ANSYS. In the ANSYS

simulation, we use 72 nodes around the hole boundary and 1:100
hole/plate ratio to approximate the unbounded laminate. From Fig.
2, we see that the results of PLANE42 are well agreed to our solu-
tion while larger discrepancy occurs for the other element types.
To find the reason, the numerical values of resultant tractions
Nn /Ns and Nns /Ns around the hole boundary, which should vanish
for a traction-free hole, are plotted in Figs. 3�a� and 3�b�. These
two figures give us strong evidence why larger discrepancy occurs
for SHELL99 and SOLID45 since they did not satisfy the traction-free
hole boundary condition, which is satisfied by PLANE42 approxi-
mately and by our solution exactly.

Because the element type PLANE42 can only be used for in-plane
problems, for general stretching-bending coupling problems one
can only choose shell or solid element. From Figs. 2 and 3, it is
expected that larger discrepancy between our results and those of
ANSYS will occur for general unsymmetrtic laminates. That is to
say, due to the approximate nature of finite element software, to
avoid providing wrong solutions it is important to have a good
reference such as the exact solutions for unbounded plates ob-
tained in this paper.

5.2 Example 2: Uniform Heat Flow in x1-x2 Plane. In this
example, we consider an unsymmetric laminate �+45/−45/
+45/0�. Figure 4 is the plot of resultant hoop stress Ns around the
circular hole boundary when only heat q̂2= q̂ flows through the
laminate in the x2 direction. The three-diemnsional SOLID70 and
SOLID45 element type of ANSYS that with 72 nodes around the hole
boundary and 1:100 hole/plate ratio to approximate the un-
bounded laminate is used to compare our results. As expected the
results of ANSYS shown in Fig. 4 do not agree well with our
solutions. Like the discussion of Example 1, this discrepancy may
come from the fact that our solution satisfies the hole boundary

Fig. 2 Resultant hoop stress Ns around the circular hole
boundary when the laminate is subjected to uniform tempera-
ture change
condition exactly, which can only be satisfied approximately by
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Fig. 3 Resultant tractions around the hole boundary when the
laminate is subjected to uniform temperature changes „a…
Fig. 4 Resultant hoop stress Ns around the circular hole
boundary when the laminate is subjected to uniform heat flow
ˆ ˆ
q2=q in the positive x2 direction
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ANSYS. Moreover, our solution is for unbounded laminates, which
is now approximated by 1:100 hole/plate ratio in ANSYS. Figure 5
shows the values of the resultant tractions Nn /Ns and Nns /Ns
around the hole boundary in ANSYS simulation which indicates
clearly that they are still far from zero.

Since our results are not only valid for circular hole but also for
elliptical hole, to see the shape effect of holes, we plot the distri-
butions of resultant force Ns, moment Ms, and twist Mns around
the hole boundary for different ratios, b /a=5,3 ,1 ,1 /3 ,1 /5 in
Figs. 6�a�–6�c�. These figures are the plots of the considered lami-
nate subjected to the heat flow q̂1= q̂ in x1-x2 plane. From Figs.
6�a�–6�c�, we see that when the ratio b /a is getting higher �i.e.,
the elliptical hole approaches to be a vertical crack perpendicular
to the applied heat flow q̂1= q̂�, the maximum values of Ns, Ms,
and Mns will locate near �=90° or 270°, which is conformable to
our engineering intuition. These results are reasonable and
expectable.

Figure 7 shows the contour plot of temperature distribution near
the hole when the laminates is subjected to uniform heat flow
q̂1= q̂ in x1-x2 plane. The temperature is nondimensionalized by
TKt /aq̂. The uniform heat flow applied at infinity can be seen by
the equidistant and parallel lines shown in this figure. However,
the normal of these parallel lines is not necessarily the flow direc-
tion, which can be understood by first equation in the relation
�3.1� if Kij

t �0 when i� j �K11
t =4.510−3 W/ °C, K12

t =1
10−3 W/ °C, and K22

t =3.510−3 W/ °C�.

5.3 Example 3: Uniform Heat Flow in x3 Direction. Con-
sider the unsymmetric laminate �+45/−45/ +45/0� subjected to
uniform heat flow in x3 direction and keeps its entire upper and
lower surfaces in a constant temperature Tu=100°C and Tl
=0°C. Figure 8 compares the resultant hoop stress Ns around hole
boundary calculated by Eq. �4.19� and ANSYS. As discussed in
Example 2, due to the ill satisfaction of traction-free hole condi-
tion by ANSYS �see Fig. 9�, the results of ANSYS are not well
agreed with ours. Figure 10 shows the plot of resultant force Ns,
moment Ms, and twist Mns around the elliptical hole boundary.
From Fig. 10, we see that the maximum values of Ns, Ms, and Mns
will locate near �=90° or 270° as the ratio b /a is getting higher
and locate near �=0° or 180° as the ratio b /a is getting lower.

Fig. 5 Resultant tractions around the hole boundary in ANSYS

simulation when the laminate is subjected to uniform heat flow
q̂2= q̂ in the positive x2 direction
The tendency of resultant forces and moments versus hole bound-

Journal of Applied Mechanics
aryangle � is similar to that of Example 2. It also shows that the
hygrothermal changes of unsymmertic laminate will not only in-
duce in-plane forces but also the bending moments around the

Fig. 6 Forces and moments around the elliptical hole in an
unsymmetric laminate when the laminate is subjected to uni-
form heat flow q̂1= q̂ in x1-x2 plane
hole boundary, which is well agreed to the engineering sense.
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6 Conclusions
In this work, the Stroh-like formalism for coupled stretching-

bending analysis under hygrothermal environment is developed.
By using this formalism, the solutions for an unbounded laminate,
symmetric or unsymmetric, disturbed by an elliptical hole sub-
jected to uniform heat flow and moisture transfer in the x1-x2
plane or the x3 direction are obtained explicitly. To understand the
hygrothermal effects on holes in general composite laminates, the
explicit solutions of resultant forces and moments around the hole
boundary are also obtained. Moreover, to show our solutions are
simple, general, and exact, three numerical examples concerning
the resultant forces and moments along the hole boundary sub-
jected to different hygrothermal surrounding changes are pre-
sented and their comparisons with ANSYS finite element software
package are also shown, which indicate the correctness and im-
portance of our present solutions.

Fig. 7 Temperature distribution around the hole when the
laminate is subjected to uniform heat flow q̂1= q̂ in x1-x2 plane

Fig. 8 Resultant hoop stress Ns around the circular hole
boundary when the laminate is subjected to heat flow in x3

direction
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Appendix A: Definition of the Fundamental Elasticity
Matrix N for the Coupled Stretching-Bending Problems
[6]

The 88 fundamental elasticity matrix N is defined as

N = �L2 +
1

2
J2�−1�L1 +

1

2
J1� = ItNmIt, �A1a�

where

N = �N1 N2

N3 N1
T , Nm = ��Nm�1 �Nm�2

�Nm�3 �Nm�1
T , It = �I1 I2

I2 I1
 ,

�A1b�

L1 = � Q 0

RT − I
, L2 = − �R I

T 0
 ,

J1 = �− I44 − I43

I34 I33
, J2 = �− I43 I44

I33 − I34
 . �A1c�

and

�Nm�1 = − Tm
−1Rm

T , �Nm�2 = Tm
−1 = �Nm�2

T,

�Nm�3 = RmTm
−1Rm

T − Qm = �Nm�3
T, �A1d�

I1 = �I 0

0 0
, I2 = �0 0

0 I
 . �A1e�

In the above, I denotes the identity matrix and Iij stands for a
matrix whose components are all zero except the ij component.
Matrices Q, R, and T are three 44 real matrices which are
related to the elastic constants and are the matrices defined for the
displacement formalism developed in �6�, while Qm, Rm, and Tm

Fig. 9 Resultant tractions around the hole boundary in ANSYS

simulation when the laminate is subjected to uniform heat flow
in x3 direction
are those defined for the mixed formalism �6�. They are defined by
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l=
Q = �QA QB

QB QD
, R = �RA RB

RB RD
, T = �TA TB

TB TD
 ,

Qm = �QÃ RB̃

R
B̃

T
− TD̃

, Rm = �RÃ − QB̃

T
B̃

T
R

D̃

T  ,

Tm =� TÃ − R̃B̃

− R̃
B̃

T − QD̃
 , �A2a�

in which

QA = �A11 A16

A16 A66
, QB = �B11 B16

B16 B66
, QD = �D11 D16

D16 D66
 ,

R =
A16 A12

, R =
B16 B12

, R =
D16 D12

,

Fig. 10 Forces and moments around the elliptical hole in an u
heat flow in x3 direction „Tu=100°C on the upper surface and T
A �
A66 A26

 B �
B66 B26

 D �
D66 D26
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TA = �A66 A26

A26 A22
, TB = �B66 B26

B26 B22
, TD = �D66 D26

D26 D22
 .

�A2b�

QÃ = �Ã11 Ã16

Ã16 Ã66

, QB̃ = �B̃11

1

2
B̃16

B̃61

1

2
B̃66

� ,

QD̃ = � D̃11

1

2
D̃16

1
D̃16

1
D̃66

� ,

ymmetric laminate when the laminate is subjected to uniform
0°C on the lower surface…
ns
2 4
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RÃ = �Ã16 Ã12

Ã66 Ã26

, RB̃ = �
1

2
B̃16 B̃12

1

2
B̃66 B̃62

� ,

RD̃ = �
1

2
D̃16 D̃12

1

4
D̃66

1

2
D̃26

�, R̃B̃ = �B̃61

1

2
B̃66

B̃21

1

2
B̃26

�
TÃ = �Ã66 Ã26

Ã26 Ã22

, TB̃ = �
1

2
B̃66 B̃62

1

2
B̃26 B̃22

� ,

TD̃ = �
1

4
D̃66

1

2
D̃26

1

2
D̃26 D̃22

� . �A2c�

Aij, Bij, and Dij, are the extensional, coupling and bending stiff-
nesses, which are the contracted notations of Aijks, Bijks, and Dijks

defined in Eq. �2.4�; Ãij, B̃ij, and D̃ij are related to Aij, Bij, and Dij
by

Ã = A − BD−1B, B̃ = BD−1, D̃ = D−1. �A3�

Note that in Eq. �A3�, the symbols A and B have different
representations from the eigenvector matrices A and B defined in
Eq. �3.2c�. The former is the traditional notation used in the com-
munity of mechanics of composite materials, while the latter is the
notation generally used in the community of anisotropic elasticity.
To let the readers from both communities see clearly what we
express in this paper, we just use italic and roman fonts to distin-
guish these symbols.

Appendix B: Definition of Barnett-Lothe Tensors Ñ, S,
H, and L [8]

S, H, and L, generally called Barnett-Lothe tensors in two-
dimensional problems, are three real matrices defined as

S = i�2ABT − I�, H = 2iAAT, L = − 2iBBT. �B1�
These three real matrices have also been proven to be the average

fundamental submatrices Ñ1, Ñ2, and −Ñ3, i.e.,

S = Ñ1 =
1

�
�

0

�

N1���d� ,

H = Ñ2 =
1

�
�

0

�

N2���d� ,

L = − Ñ3 = −
1

�
�

0

�

N3���d� , �B2�

in which N1���, N2���, and N3��� are the submatrices of the
generalized fundamental matrix N��� whose definition can be
found in �8�.

Since the Stroh-like formalism for the coupled stretching-
bending problems has been purposely organized into the form of
Stroh formalism for two-dimensional problems, the definitions
given in Eqs. �B1� and �B2� usually used for the two-dimensional
problems are also applicable for the coupled stretching-bending

problems.
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Appendix C: Definitions of Some Vectors Related to
Thermal and Moisture Moduli

By following the steps of two-dimensional thermoelasticity de-
veloped by Hwu �3� and extended Stroh-like formalism described
in Sec. 3, the thermal and moisture vectors �t and �h defined in
Eq. �3.6� can be generalized to

�t��� = ��1
t ���

�2
t ��� 	 = − �I1 I2

I2 I1
�0 �Nm����2

I �Nm����1
T ��̃1

t ���
�̃2

t ��� 	 ,

�h��� = ��1
h���

�2
h��� 	 = − �I1 I2

I2 I1
�0 �Nm����2

I �Nm����1
T ��̃1

h���
�̃2

h��� 	 ,

�C1a�

where

�̃ 1
t ��� = cos ��̃ 1

t + sin ��̃ 2
t , �̃ 2

t ��� = − sin ��̃ 1
t + cos ��̃ 2

t ,

�̃ 1
h��� = cos ��̃ 1

h + sin ��̃ 2
h, �̃ 2

t ��� = − sin ��̃ 1
h + cos ��̃ 2

h,

�C1b�

and �Nm����1 , �Nm����2, and �Nm����3 are the submatrices of the
generalized fundamental matrices Nm��� of the mixed formalism
introduced in �6�. They are defined by

�Nm����1 = − Tm
−1���Rm

T ���, �Nm����2 = Tm
−1��� = �Nm����2

T,

�Nm����3 = Rm���Tm
−1���Rm

T ��� − Qm��� , �C2a�

where Qm��� ,Rm���, and Tm��� are related to Qm, Rm, and Tm
by

Qm��� = Qm cos2 � + �Rm + Rm
T �sin � cos � + Tm sin2 � ,

Rm��� = Rm cos2 � + �Tm − Qm�sin � cos � − Rm
T sin2 � ,

Tm��� = Tm cos2 � − �Rm + Rm
T �sin � cos � + Qm sin2 � .

�C2b�
The eigen-relations for the thermal and moisture properties

have been shown in the second and third equations in Eq. �3.4b�,
which can be generalized as

N����t��� = �t����t��� + �t��� ,

N����h��� = �h����h��� + �h��� , �C3a�

where

�t��� =
�t cos � − sin �

�t sin � + cos �
, �h��� =

�h cos � − sin �

�h sin � + cos �
,

�t��� = �t����t, �h��� = �h����h, �C3b�

and

�t��� = cos � + �t sin �, �h��� = cos � + �h sin � . �C3c�

Integrating the generalized eigenrelations �C3a� from 0 to � and
using the definition �B2�, we get

� S H

− L ST �ct

dt
	 = i�ct

dt
	 +��̃ 1

t*

�̃ 2
t*	 ,

� S H

− L ST �ch

dh
	 = i�ch

dh
	 +��̃ 1

h*

�̃ 2
h*	 , �C4a�
where
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�̃ i
t* =

1

�
�

0

�

�t
−1���� i

t���d� ,

�̃ i
h*

=
1

�
�

0

�

�h
−1���� i

h���d�, i = 1,2. �C4b�
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Chaotic Phenomena Induced by
the Fast Plastic Deformation of
Metals During Cutting
In the present study the examination of chip formation is focused on the primary shear
zone, which is divided into two layers, and the variation of shear stress and temperature
in time are given by two mechanical balance equations and three energy equations. All
the five evolution differential equations are autonomous and nonlinear. The material
characteristics are determined by an exponential constitutive equation. The mathematical
model is suitable for the qualitative description of different types of chips, such as con-
tinuous chips and periodic or aperiodic shear localized chips, which is demonstrated by
the general structure and typical solutions of the equation system.
�DOI: 10.1115/1.2074727�
1 Introduction
It is widely known that technologies based on the plastic for-

mation of metals generally bring about high strain in materials,
which often occurs rather rapidly. These processes are very diffi-
cult to describe by theoretical methods, even in cases where we
know that deformation is largely concentrated on localized shear
zones in a wide range of practical technologies. This can be well-
illustrated by the example of cutting, in which the degree of shear
strain is 2–5, the shear strain rate is about 104 s−1, the magnitude
of rise in temperature is 102 K and its rate of increase is
104–105 K/s in the so-called primary shear zone.

Under such circumstances, processes can only be described—
even with simplifying assumptions—with nonlinear differential
equations, which until recently could only be solved in excep-
tional cases. As a result of this, technological developments
mainly relied on measurements, by means of which empirical cor-
relations were established. It is inevitably useful for future re-
search that a large inventory of experimental results have been
collected so far with regard to specific technologies, such as those
concerning regular, continuous chip formation in cutting. This
data may prove useful for the theoretical discussion of plastic
forming technologies, facilitated by the recent progress of com-
puter technology.

Precise theoretical calculations are very important indeed,
since—owing to the progress of technology—some characteristic
trends of modern manufacturing processes impose new require-
ments for the exact description of processes:

• in order to reach higher productivity, the intensity of pro-
cesses must be increased, while the stability of the cutting
system must be preserved;

• in order to increase economic efficiency, more operations
are often concentrated in a single cutting phase, so the com-
plexity of production processes is increasing;

• the performance of new, extreme technological tasks has
become necessary, for example, cutting with thin tools of a
small diameter, or machining of hardened materials or spe-
cial alloys etc.;

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received September 23, 2004; final
manuscript receivedwh July 7, 2005. Review conducted by A. Maniatty. Discussion
on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journal
of Applied Mechanics, Department of Mechanical and Environmental Engineering,
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be
accepted until four months after final publication in the paper itself in the ASME
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• for automation, the regular inspection of technological op-
erations must be conducted, for example, we must monitor
and evaluate the degradation �wear� of the tool and the chat-
ter characteristics of the workpiece-machine-tool system,
etc.;

• technology experts are facing increasingly strict require-
ments, including the demand for high quality, dimensional
accuracy and surface quality.

As an inevitable consequence of these trends, the importance of
modeling technological processes becomes more and more impor-
tant, and today it is still the subject of intensive research, as re-
flected in contemporary scientific studies. The theoretical study of
machining metals usually requires the examination of nonlinear
processes, owing to the nature of these technologies:

�a� The characteristics of the material manufactured, which
can generally be described by nonlinear functions;

�b� the dynamic characteristics of machines, equipment,
tools and their complex system, which are often of a
nonlinear nature;

�c� the nonlinear effects of control arising from the feedback
in process control.

The above list also reflects the specific hierarchy of problems.
The degrees of freedom increase from �a� to �c�, and the behaviour
of the system can only be described using an increasing number of
“dimensions.” The objective of the present study can be defined
“on the lower level:” We aim to study the nonlinear phenomena
arising from the characteristics of the workpiece material in cut-
ting, in order to develop a model suitable for the description of
machining technologies subject to fast plastic deformation in prac-
tice, which will also facilitate the practical study of so-called de-
terministic instability.

The examination of cutting can also prove fruitful, because both
stable and unstable processes may be observed in this technology.
Figure 1 shows austenitic steel chips, produced by machining at
three different cutting speeds. In case �a� �the classical example of
cutting� and in case �c�, continuous chips and segmental chips
were produced, respectively. Moreover, it is important that there
are real technological situations in which the process becomes
aperiodic, as is proven by case �b�.

Both strain-hardening and softening resulting from increased
temperature may occur in cutting characterized by massive defor-
mation, and the process is so rapid that the deformation zone often
behaves like a nearly adiabatic system. As a result of this, the

deformation is localized in a narrow band, and a so-called ther-
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moplastic shear instability can occur, as already shown by Zener
and Hollomon �1�. This phenomenon—as Recht �2� proved—also
emerges in the course of cutting, and shear-localized chips are
formed.

The study of different types of chips goes back more than a
hundred years, nevertheless, chips have still remained the focus of
attention, which is perfectly shown by the historical overview of
Davies and Burns �3�. The history of cutting Ti-alloys is a perfect
example of this: Although Recht �2� already showed the relation-
ship between shear instability and the formation of segmental
chips, Komanduri and Hou �4� have recently published new re-
search findings about the periodic segmental chip formation ob-
served in Ti cutting. Our own experiments have shown that seg-
mental discontinuous Ti chips can also be aperiodic. Roughly
similar chip structure may be observed in the cutting of free cut-
ting steel with low-carbon content, and we have some similar
experiences in the field of cutting so-called invar alloys.

According to our view concerning the classification of various
types of chips, chip formation is fundamentally either stable or
unstable, with the latter being either periodic or aperiodic. Among
practical technologies, aperiodic chip formation is a typical phe-
nomenon of nonlinear dynamic processes, whose examination is
the subject of “chaos theory.” In the case of stable processes,
evenly deformed chips of constant thickness, called continuous
chips are produced �see Fig. 2�a��, which is significant because we
have reliable knowledge about these processes owing to the sev-

Fig. 1 Longitudinal cross sections of austenitic steel chips.
„a… v=0.3 m/s, „b… v=0.58 m/s, „c… v=1.17 m/s…^ :0.1 mm.
eral decades of intensive research into cutting.

Journal of Applied Mechanics
2 Basic Correlations of Cutting Theory and Initial
Assumptions

The theory of continuous chip formation has long been elabo-
rated and justified experimentally by many researchers. We know
the characteristic parameters and the methods by means of which
these parameters can be determined, either by calculation or mea-
surement �see, for example, Shaw �5��.

With the symbols of Fig. 2�a�, shear strain �� in the shear zone
can be established by the following formula:

�� = tan�� − �� + cot � �1�

where � is the rake angle of the tool, � is the angle of the so-
called shear plane. The vc velocity of the chip is

vc = v.sin �/cos�� − �� �2�
Due to the high degree of deformation, it is important to note that
�� is the tangent of the angle of distortion of the material in the
shear zone.

The average velocity of shear strain is

d�avg

dt
= �̇� =

vs

�
=

v
2�

cos �

cos�� − ��
, �3�

which is the temporal change of the tangent of the angle of dis-
tortion.

Finally, an additional important factor is shear stress ��, which
is an average value that can be determined from the components
of the cutting force for the whole deformation zone as follows:

�� =
F

q
sin � . sin ��, �4�

where q is the original cross section of the chip’s material, ��

=� /2−�−�+�, and � can be determined by dynamometry �Fig.
2�a��.

The main objective of cutting theory has long been to establish
a useful correlation between �, �, �, and a certain material
strength factor ���, etc.�. This is an issue that scientists still try to
resolve, as shown by the research conducted by Bayard, who has
collected 49 different kinds of models to support his findings �6�.

Fig. 2 The simplified model of chip formation
We do not wish to discuss these static models. We will only need
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formulas �1�–�4�. Naturally, these features of the shear zone are
average values, which characterize the shear strain of the material
going through the primary deformation layer. They may be re-
garded as a reference point or value when calculating actual char-
acteristics changing in time.

We need to establish the mathematical model of the deforma-
tion process in order to describe chaotic phenomena occurring
during chip formation. It is widely known that chip formation is
the result of complex phenomena, therefore, we must make sim-
plified assumptions acceptable for the theoretical examination of
the topic. In the present case, we will apply the following thermo-
mechanical model for the description of chip formation:

�a� The processes can be described with satisfactory preci-
sion in the plane �“free cutting”�.

�b� The examination is limited to the so-called primary strain
zone, i.e., the shear zone, which is surrounded by parallel
planes forming an angle of � with the cutting speed, and
we assume that �=constant.

�c� Inertial forces and elastic deformation in energy balance
are ignored.

�d� The shear zone is composed of 1+2 layers of equal thick-
ness �. In the first, or “quasi” layer, there is no plastic
deformation, nevertheless, this quasi layer plays an im-
portant role in thermal processes. The plastic deformation
that leads to the formation of chips occurs in the other
two layers. In Fig. 2�b�, the quasi layer is situated at 0
	x	xA=� on axis x, while temperature T0 is higher than
temperature Tw of the workpiece. In the first deformation
layer of temperature T1 xA=�
x	xB=2�, while in the
second deformation layer of temperature T2 xB=2�
x
	xC=3�. Temperature is the same everywhere within
layers of thickness �, it only changes as a function of
time.

�e� The rake angle of the tool equals the angle of the shear
plane: �=� �Fig. 2�b��. Thus

�� = cot � , �5a�

vc = v.sin � , �5b�

�̇� =
v
�

cos � . �5c�

�f� Stress conditions in chip formation are illustrated by Fig.
2�b�. Applying the method of Burns and Davies �7�, we
can assume that elastic compressive stress �el of even
distribution occurs on the tool face on length l, and this
keeps balance at point x=xC with shear stress � develop-
ing in the shear zone, which is in a plastic state. As for
mechanical balance at point x=xB, we also have to con-
sider stress �pl affecting the second layer being in a plas-
tic state.

�g� Let us assume that a significant part of the mechanical
work �Lpl� appears as heat in plastic deformation, the
change of internal energy is insignificant, and the system
can be regarded as nearly adiabatic. In accordance with
Theorem I of thermodynamics, the change in heat content
is dq�r .dLpl, where r�0.95–0.98. With the symbols of
Fig. 2�b�, we can establish

dqLi

dt
= q̇Li = r�i�̇i �i = 1,2� , �6�

where �i is the shear stress and �̇i stands for the velocity
of shear strain in the deformation layers.

�h� Thermal flow is one-dimensional, with thermal conduc-
tion only occurring on the boundary surfaces of the lay-
ers. Here we can use the simplified form of the differen-

tial equation of thermal conduction
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dqi

dt
= q̇i �

4�

�2 �Ti − Ti−1�, i = 0,1,2 �7�

where q̇i=c�Ṫi and in the quasi layer �i=0� Ti−1=Tw,
which is the temperature of the workpiece.

�i� The material progressing in direction x with velocity vc
=v . sin � conducts heat itself, which is

q̇vi = c��Ti − Tw�.v. sin � i = 0,1,2 �8�

3 The Constitutive Equation
A constitutive equation that describes the behavior of the ma-

terial under the extreme strain conditions of the shear layer is
essential for the mathematical model of chip formation. Generally,
this would be f�� , �̇ ,� ,T�=0, however, we will disregard strain-
hardening in the first approach. Thus, after rearrangement, the
equation becomes �̇= f1�� ,T�.

We use the term “velocity-modified temperature” to establish
this function, which has already been used and confirmed experi-
mentally by MacGregor and Fisher �8�. According to them, the
correlation between temperature T of the material and deformation
velocity �̇ during plastic deformation can be determined from the
following empirical formula:

Tm

T
= 1 − k. ln

�̇

T

Tref

�̇ref

�9�

Here Tm refers to velocity-modified temperature, Tref and �̇ref are
reference data determined in familiar conditions and k is a con-
stant characteristic of the material, which is—according to their
measurements—k=0.008–0.045.

Furthermore, we assume that the material becomes softer dur-
ing temperature increase within the temperature range which is
characteristic of the shear zone, and plastic shear stress � can be
described by equation

� − �� � �T − T�� �10�

with satisfactory precision, where  is a constant characteristic of
the material’s thermal softening. Formula �4� defines average
shear stress ��, where T is the actual temperature, while T� refers
to the estimated value of the shear zone temperature, which has
been determined by several different methods �e.g., Ref. �5��, and
concrete calculations are also available �9�. Thus, in this case
Tref=T� and �̇ref= �̇�, which can be calculated by formula �3�. The
constitutive equation can be established by connecting Eqs. �9�
and �10�. It is advisable to study our subject without dimensions,
introducing the following variables

T̂ =
T − Tw

Tw
, T̂� =

T� − Tw

Tw
= C, �̂ =

�

��

, �11�

then, after contraction and rearrangement, discarding the special
symbols showing their dimensionless nature, we can establish

�̇

�̇�

=
T + 1

C + 1
. exp

� − 1 + a · �T − C�
b�T + 1�

= F��,T� �12�

where a = .Tw/��, b = k.a �13�
Constitutive Eq. �12� is similar to the results derived from an
Arrhenius-type function in a different way by Kubin et al. �10�,
and specifically includes the constitutive equation of Burns �11�.

4 The Mathematical Model of Chip Formation
On the basis of assumptions �a�–�i�, two equations of mechani-

cal balance and three energy equations can be established. In ad-
dition to constitutive Eq. �12�, these equations constitute the math-

ematical model of chip formation applied in the present study.
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As a result of elastic tension �el occurring in range xC	x
	xC+ l of the tool face �see Fig. 2�b��, the chip of h1 thickness
gets compressed in direction y. The displacement of point C be-
comes

yel = h1.�y = h1
�el

sin �
=

h

sin �

�el

E
�14�

Plastic forming also occurs in range xB
x	xC, which can be
expressed with shear strain �1,�2 as

ypl = ��tan �1 + tan �2� . �15�

Thus, the total displacement can be written as

ytool = yel + ypl =
h

sin �

�el

E
+ ��tan �1 + tan �2� �16�

After differentiation with respect to time and rearrangement, the
equation becomes

�̇el =
E

h1
�ẏtool − ���̇xy1 + �̇xy2�� �17�

where

ẏtool = v� = v. cos � �18a�

�̇x,yi =
d

dt
�tan �i� i = 1,2 �18b�

Using the average deformation shear velocity Eq. �3�, after rear-
rangement from Eqs. �16�–�18�, we get

�̇el =
E

h1
�.�̇��1 − ��x,y1

�̇�

+
�̇x,y2

�̇�

	
 . �19�

It follows from the mechanical equilibrium that �el . l=�2 .h1 in the
environment of A, thus

�̇2 =
E.l

h2 v. sin2 �. cos ��1 − � �̇xy1

�̇�

+
�̇xy2

�̇�

	
 . �20�

On the boundary of the two deformed layers, the equilibrium is
modified at point B on Fig. 2�b� and

�el.l + �pl . � = �1h1, �21�

thus

�1 = �el
l

h1
+ �pl

�

h1
. �22�

It is well-known that in a plastic state we can say that �pl

��3�pl, and here �pl=�2, which is the shear stress occurring in the
second layer of � thickness, exposed to shear strain, therefore, out
of Eq. �22� we can establish

�̇1 = �el
l

h1
+ �̇2

�3�

h1
. �22a�

Finally, using Eqs. �3�, �19�, and �20�, after contraction, the equa-
tion becomes

�̇1 = p.�̇2, �23�

where

p = 1 +
�3�

h
sin � . �24�

Let us also introduce dimensionless form for time

t̂ =
t

K
, �25�

then using formula �11� and constitutive equation �12�, the equa-

tion becomes
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d�̂

dt̂

��

K
=

E.l

h2 v.sin2 �.cos ��1 − �F1 + F2�� . �26�

Finally, introducing coefficient

K =
��h2

E.l.v.sin2 �.cos �
�27�

the dimensionless form of Eqs. �20� and �23�, omitting its indi-
vidual sign, we get

�̇1 = p.�1 − �F1 + F2�� , �28a�

�̇2 = 1 − �F1 + F2� . �28b�

The variation of the material’s heat content �c�Ṫ� at chip forma-
tion is composed of three elements:

• mechanical power in accordance with condition �g�,
• thermal conduction on the basis of assumption �h�,
• heat transferred by the moving material according to as-

sumption �i�.

On the basis of this, the energy equation in the quasi layer is

c�Ṫ0 =
4�

�2 ��T1 − T0� − �T0 − Tw�� − c��T0 − Tw�v.sin � ,

�29a�
while in the two deformation layers

c�Ṫ1 = r�1�̇xy1 +
4�

�2 ��T2 − T1� − �T1 − T0�� − c��T1 − T0�v.sin �

�29b�
and

c�Ṫ2 = r�2�̇xy2 +
4�

�2 �T1 − T2� − c��T2 − T1�v.sin � . �29c�

By using constitutive Eq. �12�, �̇xyi= �̇� .Fi��i ,Ti�, where i=1, 2. It
is also advisable to use dimensionless forms here, therefore, based
on Eq. �11�, we can establish

T̂w = 0, T̂i =
Ti − Tw

Tw
, i = 0,1,2 �30�

After substitution and rearrangement, the three dimensionless en-
ergy equations, can also be written without specific signs as

Ṫ0 = ��T1 − 2T0� − �.T0 �31a�

Ṫ1 = ��1F1��1,T1� − ��2T1 − T2 − T0� − ��T1 − T0� �31b�

Ṫ2 = ��2F2��2,T2� − �� + ���T2 − T1� , �31c�
where

� =
r.K.��.v
c�Tw�

cos �, � =
K.v
�

sin �, � =
4K.�

c��2 �32�

So the mathematical model of chip formation consists of evolu-
tion equations �28a� and �28b� and Eq. �31a�–�31c�, to which
constitutive equation �13� is connected. This autonomous differ-
ential equation system, comprising five equations, can be solved
easily by means of the MATHCAD program.

5 Discussion
In order to establish under what conditions we can expect the

occurrence of chaotic chip formation, we examined the structure
of the mathematical model’s solutions. In spite of the fact that
assumptions �a�–�i� considerably simplify the real conditions of
chip formation, the thermomechanic model still includes several

parameters:
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• we applied parameters ��, c, E, �, �, , T�, and k to char-
acterize the material,

• it was necessary to define the machining with parameters h,
v, �, �, and Tw,

• r, l, and � also appeared in the model.

These 17 parameters are concentrated in seven dimensionless co-
efficients �p, a, b, K, �, �, and �� by the mathematical model,
meaning that the characteristics of the mathematical model should
be examined in this seven-dimensional context, which is a rather
complicated task. The examination of the physical and technologi-
cal meaning of these parameters may offer some help in reducing
the range of variable coefficients for the purposes of practical
tasks. Coefficients a and b of the constitutive equation, which are
constant in the case of a specific workpiece, serve the same pur-
pose. The p expresses the geometrical conditions of chip forma-
tion, therefore, it can often be considered constant as well. Time
scale K, however, is a complex function, since it includes material
characteristics, technological parameters and model constants. Al-
though it can be used as fixed data, we have to be aware of its
complex nature. In accordance with formula �32�, coefficient � is
the dimensionless velocity of the chip, which is an important tech-
nological parameter. The amount of heat produced during plastic
deformation is described by �, but it is independent of the tech-
nology according to the model. Finally, � is related to both ther-
mal conduction and technology.

Taking all these into consideration, the principal characteristics
of the mathematical model on plane �−� are shown by Fig. 3, in
addition to specifying the other coefficients of a concrete calcula-
tion �p=1.03, a=0.3, b=0.012, C=1, and �=4.5�.

Fig. 4 The typical solutions of the ma
a=0.3, b=0.012, C=1…. „a… Fixed point

�=11.65, „d… five-cyclic �=11.33.
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Following the standard method of linear stability analysis, it is
recommended to calculate the boundary points determined by
equations

�̇1 = 0, �̇2 = 0 and Ṫi = 0, i = 0,1,2 �33�
first. These boundary points divide the stable solutions �fixed
points� of the original system of equations from the cyclic �Hopf
bifurcation� solutions. In Fig. 3, a continuous line marks this
boundary curve. Another boundary curve can be determined
within the range of cyclic solutions, where regular cycles cease to

ematical model „p=1.03, �=2.6 �=4.5,
22.5, „b… bifurcation �=5.8, „c… chaotic

Fig. 3 The structure of the mathematical model’s solutions. F:
Fixed point, B: Bifurcation, K+C: Chaotic and n-cyclic „n>1…,
p=1.03, �=4.5, a=0.3, b=0.012, and C=1.
th
�=
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exist, and the solution of the equation system becomes chaotic.
This is the range of deterministic instability, which is market by
the dashed line in Fig. 3.

The variation of shear stress �i and temperature Ti shows the
behavior of the model under different technological circum-
stances. Figure 4 shows functional relationship T2��2�t� ,T1�t�� at
value �=2.6 and coefficient �, calculated for various cutting
speeds v. If �=22.5, we can see that the solution of the equation
system is a typical fixed point �Fig. 4�a��, and if �=5.8 we get a
cyclic solution �Fig. 4�b��. However, there is a range between the
two values where the solution of the equation reveals chaotic
characteristics. This is shown in Fig. 4�c�, if �=11.65.

Such cutting conditions may occur in certain practical techno-
logical situations, as we can see in Fig. 1. Apart from the so-called
continuous chips of constant width, shown above �Fig. 1�a��, and
cyclically segmented chips, shown below �Fig. 1�c��, aperiodic
chips of chaotic nature may also be produced �Fig. 1�b�� �12�.

The simplified model of chip formation shown above indicates
complex characteristics, even if they are reduced to plane �−� and
only two variables. It can be shown that—even within the range of
chaotic-type chips surrounded by the dashed line �Fig. 3�—there
are smaller fields in which the equation system has exact, though
periodical solutions, containing several cycles. This is indicated
for �=11.33 in Fig. 4�d�, which shows five cycles �Figs. 4�c� and
4�d�� do not reveal the initial, rather short section of curves related
to values �=11.65 and 11.33, in order to make their relevant char-
acter more apparent. This indicates the variability of nonlinear
systems, which is somewhat important for practical purposes,
since the difference ��=0.32, for instance, may even occur as a
result of a 2.8% change of the cutting speed. Such change can also
be brought about by the fluctuation of the speed of the workpiece,
which may even arise from the mains voltage variation.

Finally, another characteristic of the mathematical model’s so-
lutions must be mentioned. The calculations often show that there
is a considerable difference between the actual numeric values of
constitutive equations F1��1 ,T1� and F2��2 ,T2� in certain mo-
ments of cyclic and chaotic solutions. This means that the differ-
ence between the velocities of deformation in the two assumed
layers of the shear zone in proportionately the same. This is in
harmony with the findings of many researchers, according to
Journal of Applied Mechanics
which strongly deformed and hardly deformed material occur cy-
clically in chips as a result of thermoplastic instability in segmen-
tal chip formation. This can also be seen in Fig. 1�c�.

6 Summary
On the basis of the simplified thermomechanic model of chip

formation, a mathematical model was established, which com-
prises five nonlinear autonomous differential equations and a con-
stitutive equation describing the thermoplastic behavior of the
workpiece material. The numerical solutions of the mathematical
model qualitatively correspond to the various types of chips de-
pending on technology. Besides continuous chips and segmental
chips produced frequently, the model also describes the formation
of aperiodic chips of irregularly, i.e., chaotically changing thick-
ness, which is supported by empirical findings.
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Size Effects on Cavitation
Instabilities
In metal-ceramic systems the constraint on plastic flow leads to so high stress triaxialities
that cavitation instabilities may occur. If the void radius is on the order of magnitude of
a characteristic length for the metal, the rate of void growth is reduced, and the possi-
bility of unstable cavity growth is here analyzed for such cases. A finite strain generali-
zation of a higher order strain gradient plasticity theory is applied for a power-law
hardening material, and the numerical analyses are carried out for an axisymmetric unit
cell containing a spherical void. In the range of high stress triaxiality, where cavitation
instabilities are predicted by conventional plasticity theory, such instabilities are also
found for the nonlocal theory, but the effects of gradient hardening delay the onset of the
instability. Furthermore, in some cases the cavitation stress reaches a maximum and then
decays as the void grows to a size well above the characteristic material
length. �DOI: 10.1115/1.2074747�
1 Introduction
Unstable growth of a small void in an elastic-plastic solid has

been studied by �1� for spherically symmetric conditions and by
�2,3� for axisymmetric stress conditions. A cavitation instability is
predicted when the stress level is sufficiently high such that the
work released in the field surrounding the expanding void is
enough to drive continued expansion, also for cases of axisym-
metric conditions as long as the ratio of the transverse stress and
the axial tensile stress is near unity. Related spherically symmetric
studies in the context of nonlinear elasticity �4–6� have inter-
preted a cavitation instability either as a bifurcation from a homo-
geneously stressed solid or as the growth of a preexisting void.

In material systems where metals are bonded to ceramics, the
constraint on plastic flow gives rise to high stress triaxiality, re-
sulting in rapid void growth, as has been observed in experiments
for Al2O3 reinforced by Al particles �7� and in experiments for a
lead wire well bonded to a thick outer glass cylinder �8�. The
cavitation in the constrained lead wire has been recently analyzed
by �9�. For a thin ductile metal layer used to bond two ceramic
blocks together, highly constrained plastic flow occurs under ten-
sion normal to the layer, leading to rapid void growth. Unit cell
models have been used to analyze the growth of such voids
through cavitation instabilities, using remeshing techniques to be
able to account for void volume increases by a factor of up to 1010

�10,11�.
When the void radius is sufficiently small, the growth behavior

is not well described by conventional plasticity theory. Then the
material model must account for observed size-effects �12–17�.
For very small voids under purely hydrostatic tension and axisym-
metric loading it has been shown �14,18,19� that the rate of
growth is much reduced when the void radius is smaller than the
characteristic material length incorporated in the nonlocal plastic-
ity theory, and Tvergaad and Niordson �20� have studied the effect
of a material size scale on the interaction of different size voids.

In the present paper, the nonlocal plasticity model used is the
finite strain generalization developed by �21� for the strain gradi-
ent plasticity theory of �18�. An implementation for power-law
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received May 10, 2005. Review conducted by R. M. McMeeking. Discussion on the
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Applied Mechanics, Department of Mechanical and Environmental Engineering,
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accepted until four months after final publication in the paper itself in the ASME
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hardening has recently been given by �22�. A unit cell model
containing a single spherical void is applied, thus allowing for
interaction with neighboring voids in a periodic array. But the
main focus here is on the effect of the characteristic material
length scale on predictions of cavitation instabilities, i.e., on very
small void volume fractions and on stress states with a very high
stress triaxiality.

2 Material Model
A finite strain generalization �21� for the strain gradient plastic-

ity theory by �18� is used to model the material numerically using
an updated Lagrangian formulation.

The theory models gradient hardening through three quadratic
invariants of the gradient of the plastic strain rate �ijk=� jik= �̇ij,k

P .
Plastic work in the material is performed due to the effective
plastic strain measure EP, defined incrementally through

ĖP2
= �̇P2

+ l1
2I1 + 4l2

2I2 +
8

3
l3
2I3 �1�

Here, �̇P2
= 2

3 �̇ij
P�̇ij

P, is the conventional measure of effective plastic
strain, I1, I2, and I3 are three invariants of �ijk, and l1, l2, and l3 are
three material length parameters.

An alternate form of Eq. �1� using just a single material length
parameter can be defined by

ĖP2
= �̇P2

+ l�
2�̇,i

P�̇,i
P �2�

where l* is a new material length parameter �18�. This effective
plastic strain measure results in a strain gradient theory related to
the theory by Aifantis �23�.

The plastic strain increment is defined according to the usual
relation for J2 flow theory

�̇ij
P =

3

2

Sij

��e�
�̇P = mij�̇

P �3�

where Sij is the deviator of the Cauchy stress �ij ,��e�=�3
2SijSij is

von Mises’ effective stress, and mij denotes the direction of the
stress deviator.

Rewriting Eq. �1� in terms of mij and �̇P results in

ĖP2
= �̇P2

+ Aij�̇,i
P�̇,j

P + Bi�̇,i
P�̇P + C�̇P2

�4�

where the tensors Aij, Bi, and C depend on the three material
length parameters l1, l2, and l3 as well as on the spatial gradients

of mij �for details see �18��.
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Using the current configuration as reference the principle of
virtual work can be expressed as

�
V

��ij
�

��̇ij − �ij�2�̇ik��̇kj − ėkj�ėki� + �q̇ − �̇�e�
� ���̇P + �i

ˇ ��̇,i
P�dV

=�
S

�Ṫ0i�u̇i + ṫ0��̇P�dS �5�

where �ij
�

is the Jaumann rate of the Kirchhoff stress, q̇ is work

conjugate to �P, and �i
ˇ is the convected derivative of the higher

order Kirchhoff stress. With the displacement vector denoted by
ui, the total strain rate is denoted by �̇ij =

1
2 �u̇i,j + u̇j,i�, and the rate

of the displacement gradient is denoted ėij = u̇i,j. The Kirchhoff
stress is related to the Cauchy stress by �ij =J�ij, and the higher
order Kirchhoff stress is related to the true higher order stress by
�i=J�i, where J is the determinant of the metric tensor. The effec-
tive stress enters the principle of virtual work through ��e�

� =J��e�.

In the right-hand side of Eq. �5� Ṫ0i and ṫ0 are nominal traction
rates conjugate to ui and �P, respectively. In addition to conven-
tional boundary conditions, conditions on the higher order traction
rate ṫ0 or the effective plastic strain rate �̇P are needed. For the
present problem ṫ0=0 is imposed for all higher order boundary
conditions, on internal boundaries as well as external boundaries.
For further discussions on higher order boundary conditions see
�18,24,25�

The constitutive equations for the various Kirchhoff stress-
measures are

�ij
�

= Rijkl��̇kl − �̇Pmkl� = �̇ij − �̇ik�kj − �ik�̇ jk �6�

q̇ = h��̇P +
1

2
Bi�̇,i

P + C�̇P� �7�

�i
ˇ = h�Aij�̇,j

P +
1

2
Bi�̇

P� = �̇i − ėik�k �8�

where h=h�Ep� is the hardening modulus, �̇ij is the antisymmetric
part of ėij and

Rijkl =
E

1 + �
�1

2
��ik� jl + �il� jk� +

�

1 − 2�
�ij�kl� �9�

is the elastic stiffness tensor. Here, E is Young’s modulus, � is
Poisson’s ratio, and �ij is Kronecker’s delta.

For details on the strain gradient theory and the finite strain
generalization see �18,21�.

3 Numerical Method and Problem Description
The numerical solutions are obtained using a two-field finite

element method similar to that used by �26,27� to model the gra-
dient theory by �23�. This method has been used by �28� to model
the small strain theory by �18�, while �21,22� have used the ap-
proach to solve problems at finite strains.

In the results to be presented, power-law hardening material
behavior is assumed, so the serendipity elements developed in
�22� have been used. Further details on the numerical implemen-
tation can be found in �28,21,22�.

An axisymmetric cell model is used to model a hexagonal ar-
rangement of spherical voids �Fig. 1�a��. The voids are aligned in
planes as shown in Fig. 1�b�. Exploiting symmetry the cell used
for computations is shown in Fig. 1�c�. The void and cell radii are
denoted Rv and Rc, respectively, and the length of the cell is
denoted Lc. Hence the in-plane void spacing is 2Rc, while the
out-of-plane void spacing is 2Lc. For the results presented
throughout this paper Lc /Rc=1 is used so that the in-plane and
out-of-plane spacings are equal. The boundary conditions applied

to the cell are specified by

Journal of Applied Mechanics
u̇1 = 0 and Ṫ02 = 0, for x1 = 0

u̇1 = U̇1 and Ṫ02 = 0, for x1 = Lc + U1

�10�
u̇2 = 0 and Ṫ01 = 0, for x2 = 0

u̇2 = U̇2 and Ṫ01 = 0, for x2 = Rc + U2

where U̇1 and U̇2 are determined through a Rayleigh-Ritz proce-
dure ensuring that a constant ratio of the average true stresses is
maintained

�2

�1
= � �11�

while specifying increasing void growth. In addition to these con-
ventional boundary conditions, ṫ0=0 is specified along the entire
surface of the material modeled. At the surface of the cell this
constitutes the appropriate symmetry boundary condition, while at
the void surface it models that dislocations are free to pass from
the material through the free surface.

In the present study the trial functions for the Rayleigh-Ritz
procedure are based on prescribed unit displacements of each of
the two cell sides in addition to the displacement of the material
point located at �0,Rv� along the direction of the x1-axis �see Fig.
2�a��.

In Fig. 2 two typical finite elements meshes used for the analy-
ses are shown. Figure 2�a� shows a mesh for a large void, while
Fig. 2�b� shows a mesh for a very small void, where the mesh is

Fig. 1 Cell model for a material with an array of voids. „a…
Hexagonal distribution of voids with a cylindrical cell indicated
by the circular dashed line. „b… A part of a layer of voids. „c…
Using the symmetry of the problem half a void can be modeled
in an axisymmetric cell. The cell radius and length are denoted
Rc and Lc, respectively, and the void radius is denoted Rv.

Fig. 2 Typical finite element meshes used for the analyses for
„a… a large void and „b… a small void. In „a… the two sides and the
node used as control degrees of freedom for the Rayleigh-Ritz

procedure are highlighted.
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highly refined around the void. In Fig. 2�a� the two sides along
which the Rayleigh-Ritz degrees of freedom are imposed are
highlighted together with the node at the void boundary on the x1
axis, which is used to control increasing void growth through
mechanical instabilities.

4 Results
Power-law hardening material behavior is assumed with the

following expression for the tangent modulus

ET =
E

n
�EP

�0
+ 1��1/n�−1

�12�

which deviates very little from that corresponding to a standard
power-law. In this expression �0=�y /E is the uniaxial yield strain,
with �y denoting the initial yield stress, and n is the hardening
exponent. The hardening modulus is then calculated through

h�ET� = � 1

ET
−

1

E
�−1

�13�

The true stress as a function of the logarithmic strain are shown
in Fig. 3�a� for conventional materials at different load ratios �.

Fig. 3 Conventional results for a material without voids and
for two materials containing voids where the in-plane spacing
equals the out-of-plane spacing „Lc /Rc=1…. For one of the ma-
terials Rv /Rc=0.2 and for the other material Rv /Rc=0.4. The
analyses are carried out for three different values of the ratio of
transverse stress to axial stress �. The material parameters are
given by �y /E=0.004, �=1/3, and n=10. „a… Shows the overall
response in terms of the true stress as a function of logarith-
mic strain, and „b… shows the relative void growth.
Results are presented for a homogeneous material as well as for
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two materials with rather large voids. The aspect ratio of the com-
putational cells is unity corresponding to equal in-plane and out-
of-plane void spacing. The void radii for the two materials with
voids are 20% and 40% of the cell radii, which corresponds to
initial void volume fractions of around 0.533% and 4.27%, re-
spectively. Figure 3�b� shows the relative void growth as a func-
tion of the logarithmic strain, for the two materials containing
voids. In Fig. 3 results are presented for different values of the
stress ratio �, namely, for �=0.5, 0.7, and 0.9. It is seen that the
overall response depends strongly on the presence of voids, espe-
cially for the higher triaxialities, where significant void growth is
accompanied by a dramatic softening of the response. Figure 3�b�
shows that the relative void growth generally is larger for smaller
voids at a given value of the overall strain, which can be ex-
plained due to the fact that the elastic-plastic material is almost
incompressible, since only elastic deformations contribute to vol-
ume change. Hence, for a given overall deformation �and overall
volume change� a smaller void will have grown relatively more
than a larger void.

In Fig. 4 conventional results are compared to gradient depen-
dent results for two different values of l* /Rv at two values of the
stress ratio �. The size of the void compared to the size of the cell
is given by Rv /Rc=0.2, which corresponds to an initial void vol-

Fig. 4 Size dependent results for a material with large voids
„Rv /Rc=0.2… with equal in-plane and out-of-plane spacing
„Lc /Rc=1…. Both conventional and gradient dependent results
with l* /Rv=1.0 and l* /Rv=2.0 are shown for two different stress
ratios. The conventional material parameters are given by
�y /E=0.004, �=1/3, and n=10. „a… Shows the overall response
in terms of the true stress as a function of strain, and „b… shows
the relative void growth.
ume fraction of around 0.533%. The solid curves show results for
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�=0.9, while the dashed curves show results for �=0.7. It is seen
from Fig. 4�a� that a higher overall stress level is obtained for �
=0.9 when compared to the lower value of � for all the different
values l*. Furthermore, for �=0.9, the peak load is more narrow
for the higher triaxiality and the overall material softening is more
pronounced for both the conventional material and the gradient
dependent materials. The reason for this can be found in Fig. 4�b�
which shows the relative void growth as a function of strain. Here,
it is seen that the material softening can be attributed to significant
void growth. For �=0.7, the relative void growth is significantly
limited by strain gradient effects. Hence, for l* comparable to the
void radius, there is only little void growth and therefore no sig-
nificant overall softening of the material response in Fig. 4�a�. On
the other hand, for �=0.9 the amount of void growth is very large
already at small strains and it has a rather weak dependence on the
material length, which explains why there is pronounced softening
for all values of l*.

Figure 5 shows contours of effective plastic strain, �p, at the
overall strain �1=0.15 for Rv /Rc=0.05 and Rv /Rc=0.40. These
void radii correspond to initial void volume fractions of 8.33·10−5

and 4.27·10−2, respectively. The stress ratio is given by �=0.7.
The first row shows results for the smaller void, while the second
row shows results for the larger void. The first column shows
results for conventional materials, while the second and third col-
umn show results for l* /Rv=1.0 and l* /Rv=2.0, respectively. For
all the analyses the maximum plastic strain level is attained at the
void. It is seen that increasing the material length parameter l*
leads to smaller gradients of plastic strain. For the initially smaller
void, the figure illustrates that the relative void growth is signifi-
cantly decreased when increasing the material length parameter.
For the initially larger void, V /V0 is much less sensitive to gradi-
ent hardening, and the relative void growth is primarily deter-
mined by the overall deformation �1. However, the shape of the
void is affected by l* /Rv, also for the initially larger void, where

Fig. 5 Contours of effective plastic strain for �
tional material parameters are given by �y /E=0.
tic strain differs by ��P=0.1.
the analyses have been carried out to the range where coalescence
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becomes relevant. For both void sizes the shape of the void
changes from oblate for the conventional analysis toward prolate
when increasing l* /Rv.

The response for materials containing sparsely distributed voids
is shown in Fig. 6�a� where Rv /Rc=0.001 has been used for the
calculations so that the initial void volume fraction is around
6.67·10−10. Results for two values of the stress ratio � are pre-
sented. For �=0.9 plasticity does not occur on the macroscopic
scale, since the stress level does not attain large enough values.
For this value of � a stress level of 10 times the yield stress must
be applied for macroscopic plasticity to occur. However, for the
smaller value of the stress ratio �=0.7, plastic deformation does
occur at the macroscopic scale, since the stress level exceeds the
yield value of approximately 3.33 times the yield stress. The
shape of the response curves are practically unaffected by gradient
effects, as the gradient hardening only influences the material lo-
cally around the void in a region scaling with l*. The relative void
growth is shown in Fig. 6�b� as a function of the overall strain �1.
Gradient effects clearly have a large influence on the relative void
growth for �=0.7, where void growth is suppressed by gradient
effects. Although this is less obvious, gradient hardening also has
important consequences for void growth when �=0.9. Figure 6�b�
indicates that the curve of relative void growth has a vertical
asymptote, as in fact a cavitation instability is obtained �1–3�. In
Fig. 6�a� this corresponds to the response curve approaching a
limit point from below �increasing stress and strain�. For the two
size-dependent analyses, with l* /Rv=1.0 and l* /Rv=2.0, the
maximum strain level exceeds that of the conventional material,
and thereafter the overall strain decreases as the voids grow and
approaches the void growth curve for the conventional material
under decreasing overall strain. In Fig. 6�a�, for the size-
dependent analyses, this corresponds to the response curves ex-
ceeding the limit point of the conventional material, to attain a
maximum value of overall stress and strain, and subsequently start

.7 at an overall strain of �1=0.15. The conven-
, �=1/3, n=10. The contours of effective plas-
=0
004
reversing in order to approach the limit point of the conventional
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material from above �under decreasing stress and strain�. In Fig.
6�a� the markings on the response curves for �=0.9 show the limit
point for the conventional material �lowest value of stress and
strain�, and the two points at which the responses for the gradient
dependent materials reverse �the point for the largest stress and
strain is the marking for l* /Rv=2.0�. For the gradient dependent
materials, the material length parameter l* decreases relative to the
deformed void size, and therefore as the void grows larger, the
gradient effects lose significance at distances comparable to the
deformed void size. Hence, the response, and even the deforma-
tions close to the void become less affected by gradient effects, as
the overall stress and deformation level approaches that of the
conventional material �for decreasing stress and strain�. In this
sense the cavitation instability for a gradient dependent materials
is at first more dramatic than for a conventional material, as it is
accompanied by decreasing stresses and strains at the macroscopic
level. However, as the voids grow large, the cavitation instability
strains become comparable.

Void growth at a larger initial void volume fraction is studied in
Fig. 7, where the initial void volume fraction is
8.33·10−5�Rv /Rc=0.05,Lc /Rc=1.0�. Results are presented for two
different values of �, and for five different values of l* /Rv �0, 1.0,
2.0, 3.0, and 4.0�. The arrows in the figures show how the results

Fig. 6 Size dependent results for sparsely distributed voids
„Rv /Rc=0.001…. Both conventional and gradient dependent re-
sults with l* /Rv=1.0 and l* /Rv=2.0 are shown for two different
stress ratios. The conventional material parameters are given
by �y /E=0.004, �=1/3, and n=10. „a… Shows the overall re-
sponse in terms of the true stress as a function of strain, and
„b… shows the relative void growth.
are affected by decreasing the initial void size Rv, and simulta-

250 / Vol. 73, MARCH 2006
neously the void spacing �or conversely increasing the material
length parameter l*�. Figure 7�b� shows that void growth is seen to
be suppressed by gradient effects for both �=0.7 and �=0.9. In
Fig. 7�a� it is seen that the overall response is almost unaffected
by size effects for �=0.7. This can be explained due to the fact
that the relative void growth remains rather small for the overall
deformation levels considered here, and hence, the overall prop-
erties of the material are unaffected by the small faults in the
material. For �=0.9 the void starts to grow rapidly at �	0.009 for
the conventional material. Even though the void growth is dra-
matic, a cavitation instability is not reached as for the smaller void
discussed in relation to Fig. 6. This can be seen from Fig. 7�a�
since the overall response neither approaches a limit point nor
goes through a mechanical instability and in Fig. 7�b� since the
curve does not become parallel with the vertical axis. Increasing
the material length parameter leads to delayed but more dramatic
void growth �Fig. 7�b��, and for the three larger values of l* /Rv
the overall strain level even goes through a maximum and then
starts to decrease. In Fig. 7�a� this is illustrated by the response
curves having sections where both overall stress and strain de-
crease. For the largest value of the material length parameter
l* /Rv=4.0, plastic deformation in a major part of the cell occurs,
which explains why the response curve goes through a short phase

Fig. 7 Size dependent results for a material with Rv /Rc=0.05
and Lc /Rc=1. Both conventional and gradient dependent re-
sults with l* /Rv=1.0, 2.0, 3.0, and 4.0 are shown for two different
stress ratios. The curves correspond to a material with a fixed
length parameter and a fixed initial void volume fraction, but
with different void size and void spacing. The conventional ma-
terial parameters are given by �y /E=0.004, �=1/3, and n=10.
„a… Shows the overall response in terms of the true stress as a
function of strain, and „b… shows the relative void growth.
of reduced slope before passing through the mechanical instabil-
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ity. The fact that the strain level goes through a maximum at the
onset of instability was also noted by �19� for spherically symmet-
ric loading conditions.

Sparsely distributed voids �Rv /Rc=0.001� at different large val-
ues of � are investigated in Fig. 8. For the overall loading condi-
tions specified by �=0.9 and �=1.0 the response curves show that
the material behaves elastically on the macroscopic scale. For the
conventional material under these loading conditions a cavitation
instability is reached in the elastic regime, and for the gradient
dependent analyses with l* /Rv=2.0 this state is approached from
above �with decreasing overall stress and strain�. For �=0.8 over-
all plasticity sets in long before a cavitation instability is reached
for the conventional material. Within the range considered here,
the cavitation instability is not reached as the analysis is termi-
nated when V /V0=200 as the finite element mesh around the void
becomes too distorted. For the size-dependent material with
l* /Rv=2.0 void growth is suppressed such that the analysis can be
carried out to a larger overall deformation level. At an overall
strain of just above �1=0.04 the cavitation instability is reached
and the response curve shows that the material goes through a
mechanical instability. For this value of � the cavitation instability
of the conventional material does not serve as a limit state for the
gradient dependent material since the instabilities are reached at
different states in the plastic regime.

Fig. 8 Size dependent results for sparsely distributed voids
„Rv /Rc=0.001… for different values of �. Both conventional and
gradient dependent results with l* /Rv=2.0 are shown. The con-
ventional material parameters are given by �y /E=0.004, �
=1/3, and n=10. „a… Shows the overall response in terms of the
true stress as a function of strain, and „b… shows the relative
void growth.
Figure 9�a� shows the relative void growth for �=0.9 and �
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=1.0. Both conventional results and gradient dependent results
with l* /Rv=2.0 and 3.0 are shown. Also here it is seen how the
curves for the gradient dependent analyses first reach a peak
strain, and then approach the curve for the conventional analyses
under decreasing overall strain �1. For �=0.9 the ratio of the void
size in the main tensile direction �the x1 direction�, denoted by a,
to the void size in the x2 direction, denoted by b, is shown as a
function of overall strain in Fig. 9�b�. For a /b	1 the void shape
is prolate, while the void shape is oblate for a /b
1. For all val-
ues of l* the void moves toward a prolate shape for small defor-
mation levels. At an overall strain of around �1=0.0035 the void
in the conventional material becomes oblate. For l* /Rv=2.0 the
void shape is prolate until around the maximum load point, where
is becomes oblate, and then again becomes prolate upon further
deformation. For l* /Rv=3.0 the void shape is prolate until shortly
before the mechanical instability is reached, where it becomes
oblate until the termination of the analysis.

Until now only the single parameter version of the gradient
theory has been discussed. In Fig. 10 the general three parameter
version of the theory is studied for sparsely distributed voids

Fig. 9 Size dependent results for sparsely distributed voids
„Rv /Rc=0.001…. Both conventional and gradient dependent re-
sults with l* /Rv=2.0 and 3.0 are shown for two different stress
ratios. The conventional material parameters are given by
�y /E=0.004, �=1/3, and n=10. „a… Shows the relative void
growth as a function of strain, and „b… shows the ratio of the
void size in the x1 direction to the void size in the x2 direction
for �=0.9.
�Rv /Rc=0.001�, for �=0.9. The relative void growth is shown as a
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function of strain. It is seen from the figure that l2 and l3 has an
insignificant influence on void growth for this specific problem.
This is in agreement with the findings in �18�, where it is reported
that void growth for a single void in an infinite medium under
hydrostatic tension shows no dependence on l2 and only minor
dependence on l3. Figure 10 shows that l1 is an important param-
eter, and that in fact l1 has a comparable influence on void growth
as l*, when the value of l1 is chosen to be around half that of l*.
This also is in excellent agreement with the finding in �18� for a
single void under hydrostatic tension, where it is reported that l*
has the same influence as l1, apart from a factor of about 2.

5 Concluding Remarks
For a single void in an infinite solid made of a conventional

elastic-plastic material a cavitation instability may be predicted
when the stress level is sufficiently high, such that the work re-
leased in the field surrounding the expanding void is sufficient to
drive the void expansion. This typically occurs when the material
is subject to highly constrained plastic flow. The unstable void
growth occurs while the stress and strain states at infinity stay
constant. The analyses in the present paper have shown that this
type of behavior is noticeably changed when the material follows
a strain gradient plasticity theory.

In �29� the development of the void shape during void growth
and void collapse in power-law creeping solids were studied. In
the present paper it is illustrated that the transition from a prolate
to an oblate void shape depends on the material length parameter
in an elastic-plastic power-law hardening material.

For small voids with a radius comparable to or smaller than the
characteristic material length incorporated in a nonlocal plasticity
theory it has been shown �14,20� that the rate of void growth is
much reduced relative to that in a conventional elastic-plastic ma-
terial. This is also found in the present analyses, but it is seen that
the delay due to nonlocal effects is more pronounced for low to
moderately high stress triaxiality, as specified by values 0.5 or 0.7
of the stress ratio �=�2 /�1. For high stress ratios �=0.9 or �
=1.0, where a cavitation instability is likely to occur if the void
volume fraction is sufficiently low, the behavior is apparently
dominated by the tendency towards unstable growth, and the de-
lay in void growth is less pronounced, e.g. see Figs. 6–8. How-
ever, also when a cavitation instability develops as clearly seen in
Figs. 6, 7, and 9, the onset of the instability is delayed by the
nonlocal effects.

All the investigations of void growth under the influence of a

Fig. 10 Relative void growth for sparsely distributed voids
„Rv /Rc=0.001… using the general theory with each of the three
length parameter activated one by one keeping the other two
equal to zero. For comparison results for the single parameter
version is included. The conventional material parameters are
given by �y /E=0.004, �=1/3, and n=10.
characteristic material length �e.g., �14,20�� have shown that the
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effect on void growth is smaller when the ratio between the ma-
terial length and the void radius becomes smaller. This is impor-
tant in the case of cavitation instabilities, where the value of the
current void radius suddenly grows significantly �in some calcu-
lations in the present paper the void growth is followed up to a
radius increase by a factor 5, and �10� has followed unstable
growth where the radius has increased by a factor larger than
1000�. The material length remains fixed and therefore a large
increase of the void radius will reduce the ratio of the material
length and the void radius to a smaller and smaller value, where
the reduction of the rate of void growth gradually disappears as
the void grows large. This is the reason for the behavior illustrated
in Figs. 6–9, where the nonlocal materials show that a peak strain
is reached before the remote strain and stress levels are again
reduced according to the quasi-static analysis, while the void size
continues to increase.

For the conventional material, accounting for no material
length, the cavitation instability is characterized by the fact that
the remote strain level becomes constant, while the void grows
very large. However, for the nonlocal material the present analy-
ses show that the remote strain level and the corresponding stress
level will reach a peak value so that here the instability will occur
at a snap point, where the work released in the field surrounding
the void will exceed that needed to drive the void growth. In these
circumstances it is expected that the instability will in reality oc-
cur more dramatically, with some of the released elastic energy
transformed into kinetic energy.
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Surface Stress and Reversing
Size Effect in the Initial Yielding
of Ultrathin Films
Very recent experiments indicate that in free-standing metallic films of constant grain size
the initial yield stress increases as the film becomes thinner, it peaks for a thickness on the
order of 100 nm, and then starts to decrease. This reversing size effect poses two chal-
lenges: (1) It cannot be explained using currently available models and (2) it appears to
contradict the classical experimental results due to J. W. Beams [1959, “Mechanical
Properties of Thin Films of Gold and Silver,” in Structure and Properties of Thin Films,
Wiley, New York, pp. 183–198]. Here we show that the reversing size effect can be
explained and the contradiction dispelled by taking into account how the initial yielding
is affected by the surface stress. We also predict that the mode of failure of a film changes
from ductile to brittle for a thickness on the order of 100 nm, in accord with
experiments. �DOI: 10.1115/1.2074767�
1 Introduction
The mechanical behavior of tiny metallic bodies has long been

known to be subject to size effects �1�. For example, the yield
stress of crystalline whiskers may exceed the yield stress of large
crystals of the same material by a factor of 10 or more �2�. With
the development of nanotechnologies in recent years, much new
research has been devoted to elucidating size effects in polycrys-
talline ultrathin films.

One size effect that has drawn much attention pertains to the
large strain gradients that arise, for example, in films subjected to
bending. This size effect has been ascribed to the high density of
geometrically necessary dislocations induced by the strain gradi-
ent �3,4�. Another size effect pertains to the texture �or preferential
grain orientation� that is characteristic of thin films grown on crys-
talline substrates. Because a texture frequently leads to a higher
yield stress �5,6�, this size effect can be readily explained. Still
another size effect pertains to the grain size, which in annealed
films tends to scale with the thickness of the film �5,6�. Because
smaller grains lead to a higher yield stress �the Hall-Petch relation
�7–9�� or perhaps to a lower yield stress �the reverse Hall-Petch
relation, valid for grains smaller than about 10 nm �10��, this size
effect can be readily explained.

In a very recent experimental study �11�, the yield stress of gold
films of constant texture and grain size subjected to uniaxial ap-
plied tension showed a peculiar size effect. The yield stress in-
creased with diminishing film thickness, up to a thickness h
=500 nm. Then, for h=300 nm, the yield stress remained the
same as for h=500 nm, indicating that the yield stress had at-
tained a maximum value for h�400 nm. In another recent, simi-
lar experimental study �12�, the yield stress of pure aluminum
films increased up to a thickness h=100 nm; then, for h
�100 nm, the yield stress started to decrease. This reversing �first
hardening, then softening� size effect cannot be explained by any
of the models proposed so far, because those models predict a
hardening size effect �for constant grain size�.

Here we model the film using continuum mechanics. We start
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by establishing expressions for the compressive stresses induced
in the film by the surface stress. After adding these stresses to the
applied stress, we use the von Mises yield condition to ascertain
the value of the applied stress at initial yielding or apparent yield
stress. Our results indicate that in films subjected to uniaxial ap-
plied tension the surface stress causes a reversing size effect on
the apparent tensile yield stress. Using the values of surface stress
determined in recent years via atomistic methods �13�, we esti-
mate that this size effect reverses for a thickness on the order of
100 nm, in accord with the experimental results summarized
above.

Then, we use the well-known failure criterion proposed by
Hancock and Mackenzie �14� to ascertain the mode of failure of
the film. Our results indicate that the mode of failure changes
from ductile to brittle for thicknesses close to the thickness for
which the size effect reverses. These results are in accord with the
experimental results of Ref. �11�.

Last, we show that the surface stress may lead to entirely dis-
parate size effects depending on the applied stress. In particular,
we find that in films subjected to biaxial applied tension the sur-
face stress does not lead to a reversing size effect. This finding
reconciles the recent experimental results summarized above with
J. W. Beams’s experiments on gold and silver films, in which the
size effect did not reverse even for h=20 nm �15,16�.

Our work joins a growing body of research in which the surface
stress has been found to play a crucial role in several problems at
ultrasmall lengthscales, including the blunting of a crack tip �17�
and the nanoindentation of a crystal �18�.

2 Surface Stress
The surface stress is a second-rank tensor T��, where the indi-

ces � and � run from 1 to 2 and denote in-plane coordinates
defined on the surface. �For detailed discussions of the surface
stress see, for example, �19,20�.� To relate the surface stress to the
surface energy � using Eulerian coordinates �21�, consider an el-
ement of surface of area A and energy �A that is stretched by an
in-plane elastic strain ���. Then, the work performed by the sur-
face stress is dW=AT�����, and the energy �A changes by
d��A�=�dA+Ad�=�A���+A��� /��������, where repeated indi-
ces imply summation. Equating dW to d��A� results in the desired
expression for the surface stress, T��=����+�� /����, where ���
is the second-rank Kroenecker delta. The second term in the ex-
pression for T�� represents the change in surface energy associ-

ated with the elastic stretching of the surface. When the area of a
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liquid surface is increased, the surface does not stretch elastically,
because the atoms in the interior of the liquid are mobile and may
readily migrate to the surface. Thus in liquids the second term in
the expression for T�� vanishes, and the surface stress is isotropic
and equal to the surface energy. This is not the case in solids,
because in solids the long-range order in the positions of the at-
oms makes it infeasible for the atoms to migrate to the surface, in
particular when the strain applied to the surface amounts to a
displacement of a small fraction of the lattice constant. Thus in
solids the second term in the expression for T�� may not neces-
sarily vanish, and the surface stress is in general anisotropic.

Consider now the crystalline surface of a free-standing crystal.
The surface accommodates the lattice constant of the bulk of the
material by means of a spontaneous elastic stretching. If the crys-
talline surface possesses a threefold or higher rotational axial
symmetry, then in the expression for T�� the term �� /���� asso-
ciated with this elastic stretching is isotropic �13�. That is the case
for �111� surfaces in fcc metals. In the experiments of interest here
the films had a preferred �111� crystallographic texture normal to
the faces of the films, and we are justified in assuming an isotropic
surface stress, T��=T���. The surface stress may in principle
be either positive �tensile� or negative, but it is positive for fcc
metals.

3 Surface Stress in Thin Films
Consider a free-standing film of length L�h and width W�h

�Fig. 1�a��. Suppose that the film is severed through its thickness
along an arbitrary in-plane direction. �The cut is marked C1 in Fig.
1�a��. Then, the surface stress, which we assume to be positive
and isotropic, becomes manifest as a tensile force T per unit
length of the perimeter of the cut, acting normal to the surface of
the cut, as indicated in Fig. 1�b�. If the severed parts of the film
are to remain in equilibrium, the surface stress must induce a
compressive stress on the surface of the cut; because the film is
very thin, the induced stress is uniform and of value −2T /h on the
surface of the cut �Fig. 1�c��. Thus the surface stress induces a
compressive stress of value −2T /h in all in-plane directions �19�.

Suppose now that the film is severed parallel to its upper and
lower faces. �The cut is marked C2 in Fig. 1�a��. Then, the surface
stress must again induce a compressive stress on the surface of the

Fig. 1 „a… A free-standing thin film. C1 and C2 are cuts per-
formed for stress analysis. „b… The surface stress T acting on
the perimeter of C1. „c… The compressive stress induced by T
on the surface of C1. „d… The compressive stress induced by T
on the surface of C2. „e… Applied traction that gives the same
stresses as T.
cut, but now the stress is confined to a very narrow strip �of width
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�h� parallel to the lateral edges of the film, as indicated in Fig.
1�d�. Thus in most of the film the surface stress induces no stress
in the direction of the thickness of the film.

From our discussion so far, we conclude that in a film of thick-
ness h the stresses induced by the surface stress may be approxi-
mately simulated by �i� applying an in-plane compressive traction
of value −2T /h on all the lateral edges of the film and �ii� leaving
the upper and lower faces of the film traction-free �Fig. 1�e��. This
conclusion is valid where the film is thin, i.e., where L�h and
W�h.

4 Apparent Yield Stress
Consider now a free-standing thin film to which a uniaxial

stress 	a is applied in the direction of the length of the film. Then,
the film is uniformly subjected to principal stresses 	1=	a
−2T /h, 	2=−2T /h, and 	3=0 in the direction of the length,
width, and thickness, respectively. We may ascertain the value of
the applied stress at initial yielding or apparent yield stress 	a

y by
substituting the principal stresses in the von Mises yield condition,
2	y

2= �	1−	2�2+ �	2−	3�2+ �	3−	1�2, where 	y is the yield stress
�22�. The result is

	a
y

	y
=

T

h	y
±	1 − 3
 T

h	y
�2

. �1�

Figure 2 shows a graphical rendition of Eq. �1� in the form of a
plot of the dimensionless apparent yield stress 	a

y /	y versus the
dimensionless thickness h	y /T. In the plot there is a single curve
separating the elastic region �which the curve embraces� from the
plastic region. The curve consists of two branches touching at
their leftmost points �marked M in Fig. 2�. The upper branch
corresponds to the 
 sign in Eq. �1� and gives the apparent tensile
yield stress. On the other hand, the lower branch corresponds to
the � sign in Eq. �1� and gives the apparent compressive yield
stress. The branches are supported on h�hM �	3T /	y �because
the discriminant of Eq. �1� is negative for h�hM�. Therefore, a
film of thickness h�hM cannot be poised between the elastic
region and the plastic region, regardless of the applied stress; such
a film is always in the plastic region.

Figure 2 indicates that for h�T /	y the apparent tensile yield

Fig. 2 A plot of the dimensionless apparent yield stress �a
y /�y

versus the dimensionless thickness h�y /T. See Eq. „1…. The
points F, R, M, and V are referred to in the text. The size effect
of the apparent tensile yield stress reverses from hardening to
softening at the point R.
stress is 	y, and the apparent compressive yield stress −	y. Thus
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for h�T /	y the initial yielding may be attained by applying a
tensile stress 	y or a compressive stress −	y. This is the expected
asymptotic behavior.

Next, we discuss in turn the two branches of Fig. 2. Consider
first the lower branch, starting with a thin film of thickness h
�T /	y. If the thickness of the film diminishes, the absolute value
of the apparent compressive yield stress decreases �i.e., d	a

y /dh
0�, and we say that there is a softening size effect. If the thick-
ness continues to diminish, then, for a thickness h=hV�2T /	y,
the apparent compressive yield stress vanishes, 	a

y =0 �point V in
Fig. 2�. Thus a free-standing film of thickness h=hV spontane-
ously attains the initial yielding by virtue of the compressive
stresses induced by the surface stress. When a tensile stress is
applied to this free-standing film, the film departs from the initial
yielding, enters the elastic region, and re-attains the initial yield-
ing at the apparent tensile yield stress given by the upper branch
of Fig. 2. If the thickness continues to diminish beyond hV, the
apparent compressive yield stress becomes positive �i.e., the lower
branch of Fig. 2 gives a positive value of 	a

y�. This positive value
of 	a

y is the minimum tensile stress that must be applied to the film
if the film is not to yield by virtue of the compressive stresses
induced by the surface stress. �Therefore, the name “apparent
compressive yield stress” remains appropriate, even though this
stress is positive.� Last, for a thickness h=hM �	3T /	y, we reach
the leftmost point of the lower branch.

Consider now the upper branch of Fig. 2, starting with a thin
film of thickness h�T /	y. If the thickness of the film diminishes,
the apparent tensile yield stress increases �i.e., d	a

y /dh�0�, and
we say that there is a hardening size effect. If the thickness of the
film continues to diminish, then, for a thickness h=hF�5T /	y,
the size effect is at its most hardening �i.e., d2	a

y /dh2=0; point F
in Fig. 2�. If the thickness continues to diminish beyond hF, then
the hardening size effect starts to lessen �i.e., d	a

y /dh starts to
become less negative�. Eventually, for a thickness h=hR

�2	3T /	y �3.5T /	y, the apparent tensile yield stress attains its
maximum value 	a

y =	aR
y �2	y /	3�1.15	y and the size effect

vanishes �i.e., d	a
y /dh=0; point R in Fig. 2�. If the thickness

continues to diminish beyond hR, the apparent tensile yield stress
decreases �i.e., d	a

y /dh0�, and we say that there is a softening
size effect. Thus for a thickness h=hV�2T /	y the apparent ten-
sile yield stress equals its original value 	a

y =	y. Last, for a thick-
ness h=hM �	3T /	y �1.73T /	y, the apparent tensile yield stress
equals its minimum value 	a

y =	aM
y �	y /	3�0.58	y and we

reach the leftmost point of the upper branch.
From our discussion of Fig. 2 we conclude that the surface

stress causes a size effect on the apparent tensile yield stress. For
thin films of thickness h�T /	y there is a hardening size effect,
but the size effect reverses from hardening to softening for a
thickness hR�2	3T /	y. Thus the stresses induced in a thin film
by the surface stress lead to a size effect of the type recently
observed in experiments.

5 Size Effects and the Yield Condition
We have predicated Eq. �1� on the von Mises yield condition

	e=	y. Here 	e, the equivalent stress, quantifies the forcing that
tends to produce plastic deformation; it is defined by the expres-
sion 2	e

2��	1−	2�2+ �	2−	3�2+ �	3−	1�2, where 	1, 	2, and 	3
are the principal stresses. This expression for 	e suitably quanti-
fies the forcing if the plastic deformation occurs by the relative
slip of adjacent planes in the material, regardless of the specific
mechanisms whereby the slip is effected. �The slip need not be
affected by dislocation motion, for example.� In fact, it is the yield
stress 	y and not the equivalent stress 	e that depends on the
specific mechanisms whereby the slip is effected. Thus the eluci-
dation of size effects consists in determining the dependence of 	y

on the size. Yet this is not the case for the size effect caused by the
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surface stress, because this size effect is unrelated to the material.
Instead, it is related to the stresses that act on the bulk of the
material and to the fact that these stresses differ from the applied
stresses. The elucidation of this size effect is not a problem in
materials science, but rather a problem in solid mechanics.

In Eq. �1� the size effect caused by the surface stress is coupled
to other size effects only through the value of 	y. Therefore, in
Eq. (1) the yield stress 	y is not the yield stress of the bulk mate-
rial, but the yield stress of the bulk material enhanced by any
pertinent size effects other than the size effect caused by the sur-
face stress.

6 Comparison with Experiments
In Sec. 4, we concluded that the size effect caused by the sur-

face stress reverses from hardening to softening for a thickness
hR�2	3T /	y. To compare the predicted value of hR with the
experimental results, we recall that for h=hR the �maximum� ap-
parent tensile yield stress is 	aR

y �2	y /	3, and write an expres-
sion for hR in terms of 	aR

y , with the result hR=4T /	aR
y .

�Note that 	y =	aR
y 	3/2 is the yield stress of the bulk material

enhanced by any size effects other than the size effect caused by
the surface stress; see Sec. 5. Note also that the expression hR

=4T /	aR
y can give only a rough estimate of the thickness for

which the observed size effect reverses, not only because we have
predicated this expression on a number of simplifying assump-
tions, but also because �a� the value of T may be strongly affected
by subtle changes in environmental conditions and �b� 	aR

y is dif-
ficult to measure, and tends to be overestimated both in experi-
ments and in atomistic simulations; see, e.g., �23�.�

For the pure gold films of the experimental study of Ref. �11�,
the reported maximum apparent tensile yield stress was 	aR

y

=170 MPa. Using the surface stress of gold given in Ref. �13�,
T=3.42 N/m �see the Appendix�, we compute hR=80 nm, which
is on the order of magnitude of the thickness for which the ob-
served size effect reversed in that study, h�400 nm.

For the pure aluminum thin films of the experimental study of
Ref. �12�, the reported peak stress was 	a

p=750 MPa, and we es-
timate 	aR

y =	a
p /2=375 MPa. Using the surface stress of alumi-

num given in Ref. �13�, T=2.29 N/m �see the Appendix�, we
compute hR=24 nm, which is on the order of magnitude of the
thickness for which the observed size effect reversed in that study,
h�100 nm.

7 Failure and the Ductile-to-Brittle Transition
Upon attaining the initial yielding, the bulk of the film under-

goes permanent deformation in the form of plastic strain incre-
ments ��1=s1��, ��2=s2��, and ��3=s3�� in the direction of
the length, width, and thickness of the film, respectively �22�.
Here �� is a dimensionless scalar factor, s1= �	1− p� /	y, s2
= �	2− p� /	y, s3= �	3− p� /	y, and p= �	1+	2+	3� /3. �Note that
the plastic deformation is isochoric, ��1+��2+��3=0.� By sub-
stituting 	1=	a−2T /h, 	2=−2T /h, 	3=0, and 	a=	a

y �where 	a
y

is the apparent tensile yield stress given by the upper branch of
Fig. 2�, we obtain

s1 =
2

3
	1 − 3
 T

h	y
�2

, �2�

s2 = −
T

h	y
−

1

3
	1 − 3
 T

h	y
�2

, �3�

and

s3 =
T

h	y
−

1

3
	1 − 3
 T

h	y
�2

. �4�

Figure 3 shows a graphical rendition of Eqs. �2�–�4� in the form of

plots of the dimensionless quantities s1, s2, and s3 versus the di-
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mensionless thickness h	y /T. As was the case for Fig. 2, the plots
in Fig. 3 are supported on h�hM �	3T /	y.

Consider now the process whereby the film accumulates plastic
deformation, eventually leading to failure in the form of fracture.
According to a well-known failure criterion �14�, the onset of
failure occurs when the equivalent plastic strain �e attains a criti-
cal value �ef that depends on the triaxiality of the stress in the
form

�ef = �0 exp�− p/	e� , �5�

where the subscript “f” stands for “at failure,” �0 is a dimension-
lesss constant, p /	e is a measure of the triaxiality of the stress,
and the equivalent plastic strain is defined by the expression
9�e

2 /2= ���1−��2�2+ ���2−��3�2+ ���3−��1�2. By evaluating
�e with ��1=s1��, ��2=s2��, ��3=s3��, and the expressions
for s1, s2, and s3 given by Eqs. �2�–�4�, we obtain �e=2�� /3;
therefore, the value of �� at failure is �� f =3�ef /2. On the other
hand, by setting 	e=	y and evaluating p with 	1=	a−2T /h, 	2
=−2T /h, 	3=0, and 	a=	a

y �where 	a
y is the apparent tensile yield

stress given by the upper branch of Fig. 2�, we obtain p /	e=−s3.
Since �� f =3�ef /2 and p /	e=s3, we can recast Eq. �5� in the form
�� f = �3/2��0 exp�s3�, and write an expression for the plastic
strain at failure in the direction of the applied stress, ��1f, as
follows:

��1f = �3/2��0s1 exp�s3� . �6�
Figure 4 shows a graphical rendition of Eq. �6� in the form a plot
of ��1f /�0 versus the dimensionless thickness h	y /T. From the
plot in Fig. 4, we conclude that the plastic strain at failure in the
direction of the applied stress �a measure of the apparent ductility
of the film� reaches a maximum thickness h=hR, it diminishes as
the film becomes thinner, and it vanishes for a thickness h=hm.

Our conclusions from the previous paragraph are in accord with
the results of recent experiments on gold films �11�, in which a
ductile-to-brittle transition was documented for a thickness on the
order of 100 nm.

8 Biaxial Loading
To inquire further into the size effect caused by the surface

stress, we now consider a type of experiment known as the bulge

Fig. 3 A plot of the dimensionless quantities s1, s2, and s3
versus the dimensionless thickness, h�y /T. See Eqs. „2…–„4….
test. In the bulge test, a film of thickness h is placed across the
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open end of a circular tube of radius R�h. Then, the pressure of
the air in the tube is increased to a value P, whereupon the film
deflects to form a bulge of height b�R. As a result, the film is
subjected to a biaxial, in-plane isotropic applied stress 	a
= PR2 /4bh� P. In a classic experimental study, J. W. Beams used
the bulge test to determine the apparent yield stress of polycrys-
talline gold and silver films of thicknesses in the range of
200 to 20 nm �15,16�. He concluded that the apparent yield stress
increased monotonically with diminishing film thickness. Thus, in
contrast with the recent experimental studies summarized above, a
reversing size effect was not observed in Beam’s classical experi-
mental study.

To understand this discrepancy, we substitute the principal
stresses of the bulge test �	1=	a−2T /h, 	2=	a−2T /h, and 	3
=0� in the von Mises yield condition, with the result

	a
y

	y
= ± 1 + 2

T

h	y
, �7�

where 	a
y is the apparent yield stress �24�1. Equation �7� predicts a

hardening size effect in the apparent tensile yield stress measured
in bulge tests, as expected. In a 1959 review paper �16�, Beams is
said to have first ascribed the hardening size effect observed in his
experiments to the surface energy. In the same paper, a plot is
shown and attributed to Beams which might be a graphical rendi-
tion of Eq. �7�. Unfortunately, Beams appears not to have pub-
lished the equations leading to this plot. �He subsequently came to
the conclusion that the size effect observed in his experiments
could not be ascribed to the surface energy, because for relatively
thick thin films the predicted size effect fell short of the observed
size effect �16�. It was thought at the time that the observed size
effect should be ascribed to a single reason.�

From our discussion of the bulge test we conclude that, in con-
trast with our results for thin films subjected to a uniaxial applied
stress, the surface stress does not lead to a reversing size effect in
thin films subjected to a biaxial, isotropic applied stress.

1It is straightforward to show that this same size effect is valid for wires. For

Fig. 4 A plot of the normalized plastic strain at failure in the
direction of the applied stress versus the dimensionless thick-
ness, h�y /T. See Eq. „6….
atomistic simulations in ultrathin wires, see, for example, Ref. �24�.
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9 Discussion
We have concluded that in ultrathin, polycrystalline metallic

films the surface stress leads to a size effect in the initial yielding
that depends strongly on the applied stress, in accord with experi-
ments. Where the applied stress is uniaxial, the size effect reverses
for a film thickness hR that can be estimated using values of the
surface stress determined via atomistic methods. The result, hR
�100 nm is in accord with experiments. In addition, we have
predicted that the mode of failure of the film changes from
ductile to brittle for thicknesses close to hR, also in accord with
experiments.

To reach these conclusions, we have used continuum mechan-
ics. Given that the film thickness for which the size effect reverses
is only about 100 times a typical lattice parameter, our conclu-
sions add to a growing realization of the robustness of continuum
mechanics at ultrasmall lengthscales, a realization that has been
commented upon by a number of authors. �For a recent, eloquent
example from the field of microfluidics see �25�.�
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Appendix
In the calculations of Sec. 6 we use the �111� unrelaxed surface

stress computed by the modified embedded atom method and re-
ported in �13�. �In this useful reference, the surface stresses and
surface energies obtained by a number of methods are given for
all fcc metals: Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb. Different meth-
ods lead to comparable results, and the results are in good agree-
ment with the few available experimental measurements.� Note
that this surface stress corresponds to a free-standing crystal and
does not account for the additional elastic stretching undergone by
the surface �as well as by the bulk of the material� as the film is
stressed to the initial yielding. The required correction is negli-
gible, however. In fact, a straightforward application of the atom-
istic model of Nix and Gao �21� allows us to estimate the required
correction as �T�2E�a, where E is the Young’s modulus, � is
the strain associated with the additional elastic stretching, and a is
the lattice constant; for gold we use E�=	y =170 MPa and a
=0.3 nm, with the result �T�0.11 N/m �T=3.41 N/m.

Note also that a small increment in the plastic deformation
brings additional atoms to the surface of the film but does not
cause an additional elastic stretching of the surface �or of the bulk
of the material� �21�. We conclude that the area of the surface of a
film may change as a result of a small increment in plastic defor-
mation, but the surface retains the same structure and remains
equally stretched, so that the energy of the surface changes by
TdA, where T is the surface stress of the free-standing film, and
dA is the change in surface area. As an example of application of
this conclusion, consider a film that undergoes plastic strain incre-
ments d�1, d�2, and d�3 in the direction of L, W, and h, respec-
tively, where d�3=−�d�1+d�2�. The energy of the surface changes
by dWs=TdA=T�2LW�d�1+d�2�+2�L+W�hd�3�=2T�LW− �L
+W�h��d�1+d�2�, the stresses in the bulk of the film perform a
plastic work dW = �	 d� +	 d� +	 d� �LWh, and the applied
p 1 1 2 2 3 3
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traction performs a work dWa=	aLWhd�1. Equating dWa=dWs
+dWp leads to 	1=	a−2T /h�1− �1+L /W�h /L�, 	2=−2T /h�1
− �1+L /W�h /L�, and 	3=0, which under the assumption h /L
�1 simplifies to 	1=	a−2T /h, 	2=−2T /h, and 	3=0, as we
concluded before under the same assumption.

References
�1� Bažant, Z. P., and Chen, E. P., 1997, “Scaling of Structural Failure,” Appl.

Mech. Rev., 10, pp. 593–527.
�2� Brenner, S. S., 1956, “Tensile Strength of Whiskers,” J. Appl. Phys., 27, pp.

1484–1491.
�3� Fleck, N. A., Muller, G. M., Ashby, M. F., and Hutchinson, J. W., 1994,

“Strain Gradient Plasticity: Theory and Experiment,” Acta Metall. Mater., 42,
pp. 475–487.

�4� Fleck, N. A., and Hutchinson, J. W., 1997, “Strain Gradient Plasticity,” Adv.
Appl. Mech., 33, pp. 295–261.

�5� Lejeck, P., and Sima, V., 1983, “Orientational Relationships in the Secondary
Recrystallization of Pure Nickel,” Mater. Sci. Eng., 60, pp. 121–124.

�6� Grant, E. M., Hansen, N., Jensen, D. J., Ralph, B., and Stobbs, W. M., 1988,
“Texture Development During Grain Growth in Thin Films,” Proceedings of
the Eighth International Conference on Texture of Materials, J. S. Kallend and
G. Gottstein, eds., Springer-Verlag, New York.

�7� Griffin, A. J., Brotzen, F. R., and Dunn, C. F., 1987, “Mechanical-Properties
and Microstructures of Al-1-Percent-Si Thin-Film Metallizations,” Thin Solid
Films, 150, pp. 237–244.

�8� Venkatraman, R., and Bravman, J. C., 1992, “Separation of Film Thickness
and Grain Boundary Strengthening Effects in Al Thin Films on Si,” J. Mater.
Res., 7, pp. 2040–2048.

�9� Thompson, C. V., 1993, “The Yield Stress of Polycrytalline Thin Films,” J.
Mater. Res., 8, pp. 237–238.

�10� Schiotz, J., and Jacobsen, K. W., 2003, “A Maximum in the Strength of Nano-
crystalline Copper,” Science, 301, pp. 1357–1359.

�11� Espinosa, H. D., Prorok, B. C., and Peng, B., 2004, “Plasticity Size Effects in
Free-Standing Submicron Polycrystalline FCC Films Subjected to Pure Ten-
sion,” J. Mech. Phys. Solids, 52, pp. 667–689.

�12� Saif, T., 2004, “Scaling the Depths,” Mech. Eng. �Am. Soc. Mech. Eng.�, 126,
pp. 8–11. See also Haque, A., 2002, “Length-Scale Effects on Nano-Scale
Materials Behavior,” Ph.D. thesis, Department of Mechanical Engineering,
University of Illinois at Urbana-Champaign.

�13� Wan, J., Fan, Y. L., Gong, D. W., Shen, S. G., and Fan, X. Q., 1999, “Surface
Relaxation and Stress of FCC Metals: Cu, Ag, Au, Ni, Pd, Pt, Al and Pb,”
Modell. Simul. Mater. Sci. Eng., 7, pp. 189–206.

�14� Hancock, J. W., and Mackenzie, A. C., 1976, “On the Mechanisms of Ductile
Failure in High-Strength Steels Subjected to Multi-Axial Stress States,” J.
Mech. Phys. Solids, 24, pp. 147–169.

�15� Beams, J. W., 1959, “Mechanical Properties of Thin Films of Gold and Silver,”
in Structure and Properties of Thin Films, C. A. Neugebauer, C. A. Newkirk,
and D. A. Vermilyea, eds., Willey, New York, pp. 183–198.

�16� Menter, J. W., and Pashley, D. W., 1959, “The Microstructure and Mechanical
Properties of Thin Films,” in Structure and Properties of Thin Films, C. A.
Neugebauer, C. A. Newkirk, and D. A. Vermilyea, eds., Willey, New York, pp.
111–150.

�17� Carlsson, A. E., and Thomson, R., 1988, “Fracture Toughness of Materials:
From Atomistics to Continuum Theory,” Solid State Phys., 51, pp. 233–280.

�18� Knap, J., and Ortiz, M., 2003, “Effect of Indenter-Radius Size on Au�001�
Nanoindentation,” Phys. Rev. Lett., 90, pp. 226102.

�19� Herring, C., 1953, in Structure and Properties of Solid Surfaces, R. Gomer,
and C. S. Smith, edds., The University of Chicago Press, Chicago, IL.

�20� Cammarata, R. C., 1994, “Surface and Interface Stress Effects in Thin-Films,”
Prog. Surf. Sci., 46, pp. 1–38.

�21� Nix, W. D., and Gao, H., 1998, “An Atomistic Interpretation of Interface
Stress,” Scr. Mater., 39, pp. 1653–1661.

�22� Calladine, C. R., Plasticity, Horwood Publishing Ltd., Chichester, UK, 2000,
p. 48.

�23� Schiotz, J., Vegge, T., Di Tolla, F. D., and Jacobsen, K. W., 1999, “Atomic-
Scale Simulations of the Mechanical Deformation on Nanocrystalline Metals,”
Phys. Rev. B, 60, pp. 11971–11983.

�24� Gall, K., Diao, J., and Dunn, M. L., 2004, “The Strength of Gold Nanowires,”
Nano Lett., 4, pp. 2431–2436.

�25� Sharp, K. V., and Adrian, R. J., 2004, “Transition From Laminar to Turbulent
Flow in Liquid Filled Microtubes,” Exp. Fluids, 36, pp. 741–747.
Transactions of the ASME



Michael Krommer
Institute for Technical Mechanics,
Johannes Kepler University Linz,

Altenbergerstr. 69,
A-4040 Linz, Austria

e-mail: krommer@mechatronik.uni-linz.ac.at

Vasundara V. Varadan
Department of Electrical Engineering,

University of Arkansas,
3217 Bell Engineering Center,

Fayetteville, 72701
e-mail: vvvesm@engr.uark.edu

Control of Bending Vibrations
Within Subdomains of Thin
Plates—Part II: Piezoelectric
Actuation and Approximate
Solution
In the first part of this paper, we presented the theoretical basics of a new method to
control the bending motion of a subdomain of a thin plate. We used continuously distrib-
uted sources of self-stress, applied within the subdomain, to exactly achieve the desired
result. From a practical point of view, continuously distributed self-stresses cannot be
realized. Therefore, we discuss the application of discretely placed piezoelectric actuators
to approximate the continuous distribution in this part. Using piezoelectric patch actua-
tors requires the consideration of electrostatic equations as well. However, if the patches
are relatively thin, the electromechanical coupling can be incorporated by means of
piezoelastic (instead of elastic) stiffness (piezoelastically stiffended elastic constants).
The placement of the patches is based on the discretization of the exact continuous
distribution by means of piece-wise constant functions. These are calculated from a
convolution integral representing the deviation of the bending motion in the controlled
case from the desired one. A proper choice of test loadings allows us to eliminate repre-
sentative mechanical quantities exactly and to make the resulting bending motion to
match the desired one very closely; hence, to find a suboptimal approximate solution. In
Part I of this paper we presented exact solutions for the axisymmetric bending of circular
plates; it is also considered in Part II. For axisymmetric bending, only the radial coor-
dinate is discretized. Hence, ring-shaped piezoelectric patch actuators are considered in
this paper. �DOI: 10.1115/1.2083790�
1 Introduction
Shape control of structures is concerned with methods that will

result in a desired shape by applying a suitable actuation. A de-
sired shape may be a prescribed new shape or may be the nonde-
formed shape for a structure that is under the influence of external
disturbances. No matter what the actual desired shape is, the prob-
lem formulation will always result in the question: given an ex-
ternal disturbance, how does a suitable distribution of the actua-
tion result in the structure assuming the desired shape?

In a fundamental contribution, Haftka and Adelman �1� were
the first to introduce the notion of shape control into the journal
literature. They noted that disturbances that affect the shape of the
structure could be subdivided into two types; one type is transient,
whereas the other type is associated with fixed deformations or
those that vary slowly in time. The first refers to dynamic shape
control, while the latter refers to static shape control. Haftka and
Adelman addressed the problem of static shape control of a large
spacecraft structure by applying temperature as an actuating
mechanism. Irschik and Pichler �2� reported on results for dy-
namic shape control of solids and structures by applied thermal
expansion strains. Irschik �3� gave a detailed discussion and re-
view of both static and dynamic shape control using piezoelectric
eigenstrains as the actuation mechanism. In addition to thermal
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expansion strains and piezoelectric strains, other actuation meth-
ods may be used. However, all of these actuation methods belong
to the general class of what is usually referred to as eigenstrain
actuation or self-stress actuation methods. Early reports on self-
stresses were given by Reissner �4� and Nemenyi �5�. Presently,
self-stresses are discussed in connection with micromechanics of
solids �Mura �6�� and, more recently, in connection with shape
control and active �noise� control of structures �Rao and Sunar �7�,
Gopinathan et al. �8�, Irschik �3��. Hence, a unified approach can
be used for all members of the general class of self-stress actua-
tion methods.

In Part I of this paper �Krommer and Varadan �9��, we pre-
sented the theoretical basics of a new method to control the bend-
ing vibrations of a subdomain of a thin plate; suitably distributed
sources of self-stress were only applied in the subdomain itself.
We calculated exact solutions in the framework of thin circular
plates, which bend into an axisymmetric surface. We considered
control of arbitrary subdomains; however, we did not pay any
attention to the problem of how to practically achieve the required
distributed control. We only assumed the control agency to be any
possible type of sources of self-stress. In Part II of this paper, we
especially focus on this latter practical aspect of the problem;
especially, on the use of piezoelectric patch actuators and on how
to calculate values for the actuation to be applied at these patches
resulting in a suboptimal solution, when compared to the exact
one.

We begin the second part of our paper with an introduction to
the use of piezoelectric patch actuators. Piezoelectricity is well
known in the engineering of smart materials and structures. Typi-
cally, piezoelectric materials, which exhibit the direct piezoelec-
tric effect and the converse piezoelectric effect, are used to design

sensors and actuators. An enormous amount of literature is avail-
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able, including many review papers. Recently published reviews
are the papers by Rao and Sunar �7�, Tani et al. �10�, and Tzou
�11�. It is well known that a continuously distributed piezoelectric
actuation is not easy to be achieved. The only way reported in the
literature is to vary the polarization profile of the piezoelectric
material. However, the use of discretely acting piezoelectric patch
actuators is more practical. For an early discussion on distributed
actuation and sensing, see the fundamental paper by Lee �12� on
the theory of thin piezoelectric composite plates with actuators
and sensors. We discuss piezoelectric patches of arbitrary geom-
etry, which are fully equipped with electrodes at their horizontal
surfaces. Approximations with respect to which component of the
electric–field vector is predominant result into a simple electrome-
chanically coupled thin plate theory, which we apply in this part
of the paper.

We present a brief summary of the theoretical basics of our
methodology as developed in Part I; the goal is to control the
bending motion of a subdomain of a linear elastic plate by apply-
ing control by means of self-stress actuation. The result of Part I
was a continuously distributed self-moment tensor, which repre-
sents an exact solution of the problem. In Part II, we focus on the
implementation of this actuation by using piezoelectric patch ac-
tuators. If we have to use discretely acting patch actuators, we are
not able to achieve the desired control goal for the subdomain
exactly. Therefore, Part II of this paper is mainly devoted to the
problem of how to discretize the exact solution of Part I.

We use three methods of discretization in this paper to approxi-
mate the exact solution. The first method, which we denote as the
direct method, finds discrete values for the self-moment tensor by
demanding that the area underneath the distributed self-moment
match the area underneath the piece-wise constant self-moment.
The direct method lacks a mechanical interpretation of the result-
ing bending motion within the controlled subdomain, but allows
the use of a high number of actuators to closely match the distrib-
uted self-moment. The second method, denoted as the indirect
method, uses the same convolution integral we used in Part I;
however, we do not ask the kernel of the integral to vanish, but
only the integral itself. This is achieved by using special dummy
loading cases instead of arbitrary ones. The advantage of this
method is the mechanical interpretation of the resulting bending
motion in terms of deflection, slope, mean value of deflection, as
well as higher-order moments of the deflection. The disadvantage
is that we have to use a high number of dummy loadings in order
to use a high number of actuators. The third method combines the
direct method and the indirect method, in which the advantages of
both methods are reflected.

We present results for the axisymmetric bending motion of a
thin circular plate, as we did in Part I. A comparison between the
direct method and the indirect method is presented. The combined
method is used as a tool to calculate a suboptimal solution, which
eliminates characteristic mechanical quantities exactly and which
matches the exact solution very closely.

We conclude this introduction by a short discussion on the prac-
tical relevance of controlling subdomains of structures. Our moti-
vation for starting to work on this problem was related to the
problem of controlling the shape of conformal antennas. These
antennas are conformally mounted on vehicles that may undergo
deformations large enough to interfere with the antenna’s perfor-
mance. A conformal antenna will deform with the vehicle as it
moves. Dynamic shape control of such surfaces and structures is
important to preserve integrity of the electromagnetic perfor-
mance of the antenna. Typically, only that part of the vehicle or
structure, to which the antenna is mounted, has to be controlled
for the proposed goal; hence, the control of a subdomain of the
structure can be applied directly to this problem. First results for
the antenna problem can be found in Krommer and Varadan �13�;
in this previous work, we also focused on aspects of practicality;
however, the underlying plate theory was electromechanically de-

coupled and we did not use discretely-acting piezoelectric
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patches. Other applications belong to the field of noise reduction
in structures �Gopinathan et al. �8��. In these applications, it is
often not necessary to control the whole structure, but a significant
noise reduction can be achieved by focusing on critical parts of
the structure. An example would be the funnel of a magnetic
resonance imaging �MRI� unit, which is responsible for the highly
annoying noise experienced by patients �Nader et al. �14��.

2 Piezoelectric Actuators
In the first part of this paper �Krommer and Varadan �9��, we

presented an exact solution for the control of bending vibrations
within subdomains of thin plates. We assumed any suitable self-
stress actuation to be the control agency. In terms of constitutive
relations, the actuation was characterized as

M = D:� − M*, �1�

wherein D is the bending stiffness tensor, � is the curvature ten-
sor, and M*�x , t� is the self-moment tensor, which was assumed
arbitrary and applied within the subdomain to be controlled. M is
the bending moment tensor. In the second part of this paper, we
focus on the application of piezoelectric actuators to put the self-
stress actuation into practice. Methods that achieve an arbitrary
space-wise distribution of M*�x , t� have been reported in the lit-
erature, see Lee �12� for the method of varying the polarization
profile of piezoelectric layers. Their practicality is questionable,
because once the polarization profile is fixed, it can no longer be
changed in order to adapt the control to changing disturbances.
For that reason, we restrict the content of this paper to the use of
piezoelectric patch actuators with a constant polarization profile.
In such a case, the distributed actuation has to be achieved by the
proper placement of individual patches; preferably resulting in a
suboptimal solution when compared to the exact solution. To in-
corporate piezoelectric patches into thin-plate theory we study a
single patch attached to a substrate plate at an arbitrary location,
see Fig. 1. However, we only use pairs of patches, one of them
attached to the upper side of the substrate and the other one at-
tached to the lower side. This ensures pure bending of the plate.
The piezoelectric self-moment tensor is given as

M*�x,t� =�
z0

z1

ēEz
u�x,t�zdz +�

z2

z3

ēEz
l�x,t�zdz , �2�

in which z0 and z1 characterize the thickness extension of the
upper patch, z2 and z3 are the thickness extension of the lower
one, and z1 and z2 are the thickness extension of the substrate, see
again Fig. 1, ē is the tensor of piezoelectric coefficients, which we
assume to be identical for the two patches, and Ez

u,l�x , t� is the
thickness component of the electric-field vector in the correspond-

Fig. 1 Substrate plate with a single pair of piezoelectric
actuators
ing patch.
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Within the piezoelectric patches, the mechanical and the elec-
trical field are coupled to each other. To account for this coupling,
we have to consider the charge equation of electrostatics for di-
electrics, div Du,l=0, see e.g., Eringen and Maugin �15�. In thin-
plate theory, we assume the piezoelectric patches to be relatively
thin, such that an approximation of the three-dimensional formu-
lation by means of �Dz

u,l /�z=0 is suitable. This approximation is
based on the assumption that in-plane components of the electric
displacement vector D are negligible. The constitutive relation for
the nonzero thickness component of the electric displacement vec-
tor Dz

u,l is

Dz
u,l = ē:z� + �Ez

u,l, �3�

where � is the electric permittivity. To use the patches as actua-
tors, the surfaces are electroded; so that a voltage Vu,l can be
applied. It is now easy to find a solution for Ez

u,l�x , t� from
�Dz

u,l /�z=0 as follows:

�Dz
u,l

�z
= 0 Þ Dz

u,l =
1

hp
�

z0,z2

z1,z3

�ē:z� + �Ez
u,l�dz

=
�Vu,l

hp
+

1

hp
�

z0,z2

z1,z3

ē:z�dz ,

Ez
u,l =

Vu,l

hp
− � ē:�

�
z −

1

hp
�

z0,z2

z1,z3 ē:�

�
zdz� . �4�

Equation �4� can be inserted into the definition of the piezoelectric
self-moment tensor and the resulting relation can be inserted into
the constitutive relation. We start with the constitutive relation,
which for the domain with piezoelectric patches is

M = ��
z1

z2

Csubstratez2 +�
z0

z1

Cpatchz2 +�
z2

z3

Cpatchz2	:�

−�
z0

z1

ēEz
uzdz −�

z2

z3

ēEz
lzdz . �5�

where Csubstrate and Cpatch are the elasticity tensor of the substrate
and of the piezoelectric patches. Inserting Eq. �4� into Eq. �5�, we
find

M = Deff:� − M*,eff, �6�

in which the bending stiffness tensor Deff=D0+�D accounts for
the stiffness due to the elasticity tensor Csubstrate of the substrate
layer, for the stiffness due to the elasticity tensor Cpatch of the
patches and for an additional stiffness due to the influence of the
direct piezoelectric effect. The effective self-moment tensor M*,eff

characterizes the piezoelectric actuation. The definitions of these
entities are:

M*,eff =�
z0

z1

ē
Vu

hp
zdz +�

z2

z3

ē
Vl

hp
zdz =�

z0

z1

ē
2Vu

hp
zdz ,

D0 =�
z1

z2

Csubstratez2dz ,

�D =�
z0

z1 �Cpatchz +
ē � ē

�
�z −

1

2
�z0 + z1�	�zdz

+�
z2

z3 �Cpatchz +
ē � ē

�
�z −

1

2
�z2 + z3�	�zdz . �7�

Note that D0 is not identical to D, because it only accounts for the
influence of the substrate layer. Furthermore, we have assumed

l u
z0=−z3, z1=−z2, and V =−V , to ensure pure bending. With re-

Journal of Applied Mechanics
spect to direct problems, this theory can be applied for the analy-
sis of the electromechanically coupled behavior of thin plates.
Results have been reported in a paper by Krommer �16�, in which
the theory is developed in more detail. The dynamic behavior of
the plate with piezoelectric patches at arbitrary locations is gov-
erned by

�8�
with the constitutive relation M=Deff :�−M*,eff in areas with pi-
ezoelectric patch actuator pairs and M=D0 :� in areas without
patches. The linear inertia ��0� is defined as ��0�=�0

�0�+���0�,
where �0

�0� accounts for the substrate and ���0� for the patches;
hence, the definitions are

�0
�0� =�

z1

z2

�substratedz, ���0� = 2�
z0

z1

�patchdz , �9�

with � being the mass density of the materials.

3 Summary of Methodology
We refer the reader who is interested in the theoretical back-

ground of the methodology to Part I of the paper �Krommer and
Varadan �9��. In Part II, we only summarize the methodology. We
study a thin plate within the domain Atot and with a boundary that
is defined by Ctot; the kinematical boundary conditions are ho-
mogenous. Our aim is to control the bending motion within a
subdomain A of Atot; moreover, we apply control only in the sub-
domain A. The geometry of the plate is shown in Fig. 2, with an
arbitrary number of piezoelectric patches attached. We release the
subdomain A from the rest of the plate and we account for the
effect of the rest of the plate, that is Atot−A, by applying yet
unknown boundary conditions at the interfacing curve C. Nor-
mally, one would consider dynamical boundary conditions; how-
ever, one may as well replace some of the dynamical boundary
conditions by kinematical ones. In each point of C, we prescribe
dynamical, mixed, or kinematical boundary conditions. The four
possible types of boundary conditions are:

C: 

div M · n + ��Mn · s� · s = q̄, Mn · n = m̄

w0 = w̄0, Mn · n = m̄

div M · n + ��Mn · s� · s = q̄, � w0 · n = �̄

w0 = w̄0, � w0 · n = �̄
� , �10�

where m̄ and q̄ stand for moment and transverse force and w̄0 and

�̄ are deflection and normal slope at the boundary C of the re-
leased domain. In contrast to Part I, we will also use purely dy-
namical boundary conditions, if possible. We introduce an addi-

˜ ˇ

Fig. 2 Plate with subdomain to be controlled
tive separation of the deflection w0=w0+w0 within A, in which
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the part w̌0 accounts for the nonhomogenous kinematical bound-
ary conditions according to Eq. �10�; within the domain A, the
deflection of the controlled plate will exactly coincide with this
latter deflection w̌0, if we apply a proper control by means of
self-stress actuation. In Part I, we showed that the deflection w̃0
can be represented by a convolution integral of the form:

�
0

t ��
A

pz
d�x,t − ��w̃0�x,t�dA +�

Cq

q̄d�x,t − ��w̃0�x,t�dC

−�
Cm

m̄d�x,t − ����w̃0�x,t� · n�dC�dt

=�
0

t�
A

�Mp + M*,eff��x,t − ��:�d�x,t�dAdt . �11�

In contrast to Part I, we take nonhomogenous dynamical boundary
conditions into account in the dummy loading case. Cq is the part
of C on which transverse forces are applied and Cm is the part of
C on which moments are applied. We conclude that if Mp

+M*,eff=0, then the deflection w̃0�x , t� vanishes at every point
within the domain A for every instant of time. This follows di-
rectly from the arbitrariness of the dummy loading. Therefore, the
deflection of the plate is w̌0. This solution represents an exact
solution of an inverse problem; given the external loading of the
plate, we seek for a distributed actuation, which enforces a sub-
domain of the plate to perform a desired bending motion. Mp is a
statically admissible moment tensor that can be calculated from

A: div�div Mp� + p̃z = 0,

C: 

div Mp · n + ��Mpn · s� · s = q̃, Mpn · n = m̃

Mpn · n = m̃

div Mp · n + ��Mpn · s� · s = q̃

no boundary conditions to be satisfied
� , �12�

where a transformed force p̃z, a transformed moment m̃, and a
transformed transverse force q̃ have been introduced as

�13�

We note that both linear inertia and bending stiffness may vary in
the domain A, because in some areas piezoelectric patches are

present. We use the parameters �̄�0� and D̄, with �̄�0�=�0
�0� and D̄

=D0 in case of no patches attached or �̄�0�=��0� and D̄=Deff in
case of attached patches. From the above equations, we can cal-
culate an exact solution for the plate with nonconstant parameters,
which in general will result into a distributed self-moment tensor
M*,eff, which forces the subdomain to have the deflection w̌0.
However, this self-moment tensor cannot be realized in practice,
because the actuation is restricted to the piezoelectric patches.

3.1 Solution Procedure. In contrast to Part I, we allow cur-
vature free deflections w̌0 within the subdomain A, bounded by C
�see Fig. 2�; hence, we are able to avoid the introduction of a
transition domain, which we used in Part I to bring the deflection
back to a zero value. The controlled deflection within A has to
satisfy

˘
A: � �w0 = 0 ,
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C: 

no conditions to be satisfied

w̆0 = w̄0

�w̆0 · n = �̄

w̆0 = w̄0, � w̆0 · n = �̄
� . �14�

Any deflection satisfying the relations of Eq. �14� is a proper
choice for w̌0, resulting in ��w̌0=0 inside A. We note the advan-
tage of this procedure is that we do not have to account for a
transition domain with a highly complicated distribution of the
actuation. We proceed with solving Eq. �12� by using boundary
conditions that ensure a solution. Two important aspects in the
solution procedure are as follows: first, we have to make sure that
the actuation M*,eff we calculate satisfies all constraints implied
by the piezoelectric material used, e.g., if the piezoelectric mate-
rial is transversely isotropic with the isotropic plane coinciding
with the reference surface of the plate, then the result of our
procedure must be a spherical actuation tensor, M*,eff=M*,effI;
second, the choice of boundary conditions for the released domain
of the plate has to be proper in the sense that the dummy loading
case with arbitrary loading does not result in a rigid body motion
of the plate subdomain. For this reason, we are unable to consider
dynamical boundary conditions on the whole curve C. In the ex-
amples, we will show that indeed kinematical boundary condi-
tions are not avoidable in all situations.

3.2 Approximate Solution. The solutions are approximate
because discrete piezoelectric patches cannot ensure the vanishing
of the right-hand side of

�
0

t ��
A

pz
d�x,t − ��w̃0�x,t�dA +�

Cq

q̄d�x,t − ��w̃0�x,t�dC

−�
Cm

m̄d�x,t − ����w̃0�x,t� · n�dC�dt

=�
0

t�
A

�Mp + M*,eff��x,t − ��:�d�x,t�dAdt . �15�

If we have i=1. . .n patches within A, each patch is assumed to be
located within a domain Ai

sub, which is a subset of Ai such that
Ai

sub�Ai, where �i=1
n Ai=A. The piezoelectric actuation is

Mi
*,eff�t�. The right-hand side of Eq. �15� then becomes

�
0

t�
A

�Mp + M*,eff��x,t − ��:�d�x,t�dAdt

=�
0

t ��
i=1

n �Mi
*,eff�t − ��:�

Ai
sub

�d�x,t�dA	
+�

A

Mp�x,t − ��:�d�x,t�dA�dt . �16�

3.2.1 Direct Method. A direct method to calculate the func-
tions Mi

*,eff�t� is to neglect the influence of the curvature tensor in
Eq. �16� and simply ask for the satisfaction of

Mi
*,eff�t� = −

1

Ai
sub�

Ai

Mp�x,t�dA . �17�

We denote this method as the direct method, because the approxi-
mate values for the functions Mi

*,eff�t� are directly calculated from
the statically admissible moment tensor. The higher the number of
actuators, the closer the approximate solution will be to the exact
solution. The advantage of the direct method is that we can use as
many actuators as we want to calculate the functions Mi

*,eff�t�,

because the exact solution is already known. On the other hand,
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the direct method does not permit a mechanical interpretation of
the left-hand side of Eq. �15�.

3.2.2 Indirect Method. If we use a special dummy loading
case, then we can calculate the right hand side of Eq. �16� and
force it to vanish. For each choice of the dummy load, we obtain
one equation for the unknown functions Mi

*,eff�t�,

�
0

t

�
i=1

n �Mi
*,eff�t − ��:�

Ai
sub

�d,j�x,t�dA	dt

= −�
0

t�
A

Mp�x,t − ��:�d,j�x,t�dAdt , �18�

in which Mp and �d,j are known. In the indirect method �the
functions Mi

*,eff�t� are not directly calculated from the statically
admissible moment tensor, but indirectly from Eq. �18�� the num-
ber of different dummy loading cases j=1. . .n has to be identical
to the number of actuators, which makes it hard to decide what
dummy load to use in case of a very high number of piezoelectric
patches. The main advantage of the indirect method is the me-
chanical interpretation of the left-hand side of Eq. �15�. Say, pz

d,j

=0, m̄d,j =0, and q̄d,j�x , t�= f�t� or pz
d,j =0, q̄d,j =0 and m̄d,j�x , t�

= f�t� or m̄d,j =0, q̄d,j =0 and pz
d,j�x , t�= f�t�, then we obtain the

following mechanical interpretation of the left-hand side of Eq.
�15�

�
0

t

f�t − ���
Cq

w̃0�x,t�dCdt ,

−�
0

t

f�t − ���
Cm

� w̃0�x,t� · ndCdt , �19�

�
0

t

f�t − ���
A

w̃0�x,t�dAdt .

Obviously these relations are related with mean values of the de-
viation of the deflection from the desired one, either with respect
to the boundary or domain. According to Eq. �18�, all these quan-
tities can be made zero. Higher-order dummy force loadings
pz

d,j�x , t� result in the elimination of higher moments of the devia-
tion.

3.2.3 Combined Method. The two methods we have just dis-
cussed can be easily combined, combing the advantages of both.
First, we wish to have a high number of piezoelectric patches to
closely match the distributed actuation. Second, we want to
achieve a mechanical interpretation of the left hand side of Eq.
�15� as well. We start by noting that the statically admissible mo-
ment tensor Mp�x , t� and the self-moment tensor M*,eff�t� can be
separated as

Mp�x,t� = �
j=1

m

M j
p�x�f j�t�, M*,eff�x,t� = �

j=1

m

M j
*,eff�x�gj�t� ,

�20�

in which the number of terms m depends on the transformed force
pz, the transformed moment m̃, and the transformed transverse
force q̃; especially with respect to the number of different time
variations involved. M j

*,eff�x� is domain-wise constant and gj�t� is
its time variation. For each j, we use the direct method to calcu-

late

Journal of Applied Mechanics
Mij
*,eff = −

1

Ai
sub�

Ai

M j
p�x�dA , �21�

where again i=1. . .n is the number of patches. The time varia-
tions gj�t� are calculated by using the indirect method with proper
dummy loadings. This results in m equations of the form

�
0

t

�
i=1

n ��
j=1

m

gj�t − ��Mij
*,eff:�

Ai
sub

�d,k�x,t�dA	dt

= −�
0

t�
A

Mp�x,t − ��:�d,k�x,t�dAdt , �22�

if we use k=1. . .m dummy loadings. It remains to choose the
dummy forces pz

d,k�x , t� and the dummy boundary conditions
m̄d,k�x , t� and q̄d,j�x , t�. We automatically obtain m such dummy
loadings by using the transformed force p̃z, the transformed mo-
ment m̃, and the transformed transverse force q̃ for that sake.

After having discussed the solution procedure and methods to
find approximate solutions for subdomain control of plates by
means of piezoelectric patch actuators, we will present numerical
results for the axisymmetric bending of circular plates in the fol-
lowing section.

4 Axisymmetric Bending of Circular Plates
In the previous sections, we have summarized the application of

piezoelectric patch actuators for the purpose of subdomain control
of a thin plate, the theoretical background of our methodology and
we have developed methods to obtain approximate solutions. In
this section, we discuss the axisymmetric bending of circular
plates. Figure 3 shows the circular plate with the domain we
would like to control. We consider a clamped circular plate made
of aluminum that has a radius Rtot=0.2 m and a thickness h
=3 mm. The three lowest �axisymmetric bending� natural fre-
quencies of this plate without piezoelectric patches are f1
=182.0 Hz, f2=708.7 Hz, and f3=1588 Hz. The domain we want
to control is within r�R=3 cm. This example problem is one of
the problems that were used in Part I of the paper. Therefore, we
refer to the first part of the paper for details on the governing
equations and on the formulation of our methodology for axisym-
metric bending as well as for the material parameters. In this part,
we will allow the domain to perform a space-wise constant mo-
tion; hence within r�R, we wish the deflection to be w̆0�r , t�
= w̄0f�t�, where w̄0 is an arbitrary constant. Within r�R, we cal-
culate

r � R: div�div Mp� + pz − �̄�0�w̄0f
� ��t� = 0, r = R: Mpn · n = m̄ ,

�23�
where Eqs. �12� and �13� have been used. Note that, in this ex-
ample, we need to apply control only in the subdomain itself. The
transverse force loading pz�r , t� may be considered a general load-
ing in space and time. However, we do not claim that this ap-
proach is exhaustive. Therefore, we consider the time variation of

Fig. 3 Circular plate with subdomain to be controlled
the loading to be harmonic; for an arbitrary time variation, we
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may find the solution by means of the Fourier integral, see Graff
�17�. The space-wise distribution is constant; hence; we have
pz�r , t�= p0ei�t.

For the numerical study, we choose p0=100N /m2 and we con-
sider three forcing frequencies: �=2	f =2	�100,500,1000� s−1;
these are the same as in Part I. Also note that w̆0�r , t�= w̄0ei�t, m̄
= m̄ei�t, and Mp=IMpei�t. Equation �23� becomes

r � R: �Mp + p0 + �2�̄�0�w̄0 = 0, r = R: Mp = m̄ . �24�

Equation �24� can be easily solved for the axisymmetric case. In
contrast to Part I, Eq. �24� accounts for different linear inertia,
depending on whether piezoelectric patches are present or not.
Therefore, the exact solution is not independent from the choice
for the location of piezoelectric patches.

4.1 Comparison Between Direct Method and Indirect
Method. Exploiting the circular symmetry of the problem, we
attach three concentric piezoelectric PZT-5A ring-shaped patch
actuators symmetrically to the upper and lower surfaces of the
aluminum plate. The thickness of the patches is hp=0.5 mm and
the patches are located within r� �r̄i±0.25 cm�, r̄i

= �0.5,1.5,2.5� cm. Figure 4 shows the geometry, detailing the
dimensions of the patch with r̄i=0.5 cm. According to Eq. �17�,
we have to calculate

Mi
*,eff�

r̄i−0.0025

r̄i+0.0025

2	rdr = −�
r̄i−0.005

r̄i+0.005

Mp�r�2	rdr, i = 1,2,3,

�25�

if we use the direct method. The three constant values for the
self-moment then have to be applied at the three ring patches.
Using the indirect method, we find these three values by solving
Eq. �18�:

�
0

t

�
i=1

3 �Mi
*,eff�

r̄i−0.0025

r̄i+0.0025

�w0
d,j�r�2	rdr	ei��t−��ei�tdt

= −�
0

t ��
0

R

Mp�r��w0
d,j�r�2	rdr	ei��t−��ei�tdt ,

j = 1,2,3. �26�

Obviously, we need to use three dummy loadings to obtain three
equations for the three unknown Mi

*,eff to be applied at the ring
patches. We choose pz

d,1�r , t�=1ei�t with q̄d,1=0 and m̄d,1=0,
pz

d,2�r , t�= ��̄�0� /�0
�0��ei�t with q̄d,2=0 and m̄d,2=0, and pz

d,3=0 with
qd,3=0 and m̄d,3=1ei�t. The first type of loading corresponds to
the original loading of the plate, the second one to the loading due
to the space-wise constant deflection of the subdomain, and the
third arises via the dynamical boundary conditions for the subdo-

Fig. 4 Circular plate with piezoelectric ring actuators
main. The left-hand side of Eq. �15� for these three loadings is
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�
0

t ��
0

R

w̃0�r�2	rdr	ei��t−��ei�tdt, �
0

t ��
0

R
�̄�0�

�0
�0� w̃0�r�2	rdr	


ei��t−��ei�tdt,−�
0

t � �w̃0�r�
�r

�
r=R

ei��t−��ei�tdt . �27�

We finally combine Eqs. �26� and �27� by means of Eq. �15�, a
procedure which directly leads to the conclusion that the quanti-
ties

�
0

R

w̃0�r�2	rdr, �
0

R
�̄�0�

�0
�0� w̃0�r�2	rdr,� �w̃0�r�

�r
�

r=R

�28�

vanish, if

�
i=1

3 �Mi
*,eff�

r̄i−0.0025

r̄i+0.0025

�w0
d,j�r�2	rdr	 +�

0

R

Mp�r��w0
d,j�r�2	rdr

= 0, j = 1,2,3. �29�

The three constant values for the self-moment, which are calcu-
lated from the three equations in Eq. �29� then have to be applied
at the three ring patches. The result will be that the mean value of
w̃0, a weighted mean value �incorporating different linear inertia�
of w̃0, and the slope of w̃0 at r=R vanish exactly.

Figure 5 shows the results for forcing frequencies �
=2	�100,500,1000� s−1. The deflection is presented for the un-
controlled plate, the controlled plate with the exact solution for
the piezoelectric moment applied, as well as the deflection we
obtained by using either the direct method or the indirect method.
The exact solution is the optimal solution; the subdomain has a
space-wise constant deflection. The suboptimality of the approxi-
mate solutions has to be measured with respect to the exact solu-
tion. If we use the direct method, the deflection is close to the
exact solution everywhere throughout the plate. However, we
have no criteria to measure the quality itself. Subjectively, one
may say the quality is poor. If we use the indirect method, we are
able to measure the quality of the solution. First, the deflection in
the uncontrolled domain is identical to the one of the exact solu-
tion; second, at r=R, the deflection and the slope of the approxi-
mate solution coincide exactly with the exact solution; third, the
mean value of the deviation vanishes. However, the satisfaction of
the third criteria does not result in a deflection close to the exact
one. The reason is that deviations from the exact solution at points
with small r are not properly accounted for because the area ele-
ment is 2	rdr and it vanishes for r=0. To find a better solution,
we proceed by using the combined method.

4.2 Combined Method. To use the combined method we at-
tach six concentric piezoelectric PZT-5A ring-shaped patch actua-
tors to the upper surface and the lower surface of the aluminum
plate. These patches are located within r� �r̄i±0.125 cm�, r̄i

= �0.25,0.75,1.25,1.75,2.25,2.75� cm. In a first step, we use Eq.
�21� to calculate

Mij
*,eff�

r̄i−0.00125

r̄i+0.00125

2	rdr = −�
r̄i−0.0025

r̄i+0.0025

Mj
P�r�2	rdr ,

i = 1,2,3,4,5,6, j = 1,2,3, �30�

where M1
P is due to the constant force loading p0, M2

P is due to the
piece-wise constant force loading �̄�0� /�0

�0�, and M3
P is due to the

applied moment m̄ at r=R. At each piezoelectric ring, we define

the self-moment as
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Mi
*,effei�t = �

j=1

3

Mij
*,effKje

i�t, i = 1,2,3,4,5,6, �31�

in which Kj, j=1,2 ,3 is an amplitude we still need to calculate.
Accordingly, we use Eq. �22� in the form

�
i=1

6 ��
j=1

3

Mij
*,effKj	�

r̄i−0.00125

r̄i+0.00125

�w0
d,k�r�2	rdr

= −�
0

R

Mp�r��w0
d,k�r�2	rdr, k = 1,2,3, �32�

To avoid the poor result we obtained with the indirect method in
the previous section, we use a different dummy loading. For Case

d,1 ¯ i�t ¯d,1 ¯ d,1

Fig. 5 Deflection of the circular plate: „a… �=2�100 s−1, „b… �
=2�500 s−1, and „c… �=2�1000 s−1
1, pz �r , t�=1/ �2	r�e with q =0 and m =0 instead of

Journal of Applied Mechanics
pz
d,1�r , t�=1ei�t with q̄d,1=0 and m̄d,1=0; for Cases 2 and 3, we

use the same loading as before. Note that by 2	r̄, we mean a
piece-wise-constant function that approximates 2	r because we
cannot use the latter due to its singular value at r=0. The three
mechanical quantities we are able to eliminate by using the com-
bined method are

�
0

R

w̃0�r�
2	r

2	r̄
dr, �

0

R
�̄�0�

�0
�0� w̃0�r�2	rdr, � �w̃0�r�

�r
�

r=R

. �33�

For the sake of brevity, we only show results for a forcing fre-
quency �=2	500 s−1. Figure 6 shows the deflection of the circu-
lar plate. The deviation of the deflection due to the approximate
solution from the deflection due to the exact solution is very small
within the whole plate. We conclude that, indeed, the combined
method results in a suboptimal solution, which eliminates the
three quantities of Eq. �33� exactly, and which is hard to distin-
guish from the exact, hence optimal, solution. We note that results
for �=2	�100,1000� s−1 are of the same quality. In Fig. 7, the
required self-moment to achieve the results shown in Fig. 6 is
plotted. The exact solution results in a distributed self-moment;
contrarily, the approximate solution only allows us to apply a
self-moment within the six domains where the piezoelectric rings
are located. These latter ones are space-wise constant. From Fig. 7
we see that the approximate values are pretty close to a simple
discretization of the distributed self-moment in the sense of the
direct method. However, the combined method corrected the val-
ues one would obtain for the direct method such that proper me-
chanical quantities can be exactly eliminated. The resulting solu-
tion is much better than the one we would get using the direct
method. In addition, the alternative choice of the loading Case 1
resulted in a solution, which prevents the undesired behavior we
have experienced by only using the indirect method.

Fig. 6 Deflection of the circular plate; �=2�500 s−1

−1
Fig. 7 Self-moment applied in subdomain; �=2�500 s
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4.3 Control of an Alternative Subdomain. In this section,
we seek to control the subdomain within 0.16 m=R�r�Rtot
=0.2 m. We use four concentric piezoelectric PZT-5A ring-shaped
patches at the upper surface and the lower surface of the
aluminum plate located at r� �r̄i±0.25 cm�, r̄i

= �0.165,0.175,0.185,0.195� m. For the exact solution, we note
that without having to introduce a transition domain, we are able
to eliminate the deflection in the subdomain. For that sake, we use
dynamical boundary conditions at R=0.16 m for calculating a
statically admissible bending moment from

R � r � Rtot: �Mp + p0 = 0, r = R: Mp = m̄ and
�Mp

�r
= q̄ .

�34�

The exact solution Mp+M*,eff=0 would result in a zero deflection
within R�r�Rtot, because the kinematical boundary conditions
at r=Rtot are trivial. We find the approximate solution by using the
combined method, in which the first step is to calculate

Mij
*,eff�

r̄i−0.0025

r̄i+0.0025

2	rdr = −�
r̄i−0.005

r̄i+0.005

Mj
P�r�2	rdr ,

i = 1,2,3,4, j = 1,2,3, �35�

where M1
P is due to the constant force loading p0, M2

P is due to the
applied transverse force q̄ at r=R, and M3

P is due to the applied
moment m̄ at r=R. At each piezoelectric ring, we define the self-
moment as

Mi
*,effei�t = �

j=1

3

Mij
*,effKje

i�t, i = 1,2,3,4, �36�

with the amplitudes Kj, j=1,2 ,3, which are calculated from

�
i=1

4 ��
j=1

3

Mij
*,effKj	�

r̄i−0.0025

r̄i+0.0025

�w0
d,k�r�2	rdr

= −�
R

Rtot

Mp�r��w0
d,k�r�2	rdr, k = 1,2,3. �37�

For the dummy loadings, we use pz
d,1�r , t�=1/ �2	r̄�ei�t with q̄d,1

=0 and m̄d,1=0, with the piece-wise constant function 2	r̄,
pz

d,2�r , t�=0 with q̄d,2=1ei�t and m̄d,2=0, and pz
d,3�r , t�=0 with

qd,3=0 and m̄d,3=1ei�t. Therefore, we are able to eliminate the
mechanical quantities

�
R

Rtot

w̃0�r�
2	r

2	r̄
dr, �w̃0�r��r=R, � �w̃0�r�

�r
�

r=R

. �38�

Fig. 8 Deflection of the circular plate; �=2�100 s−1
Figure 8 shows the deflection of the circular plate for a forcing
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frequency �=2	100 s−1. As in the previous example, the devia-
tion between the exact solution and approximate solution is very
small. Again, the approximate one can be called suboptimal with
respect to the exact one and optimal with respect to the elimina-
tion of the mechanical quantities of Eq. �38�. Results for different
forcing frequencies are easily obtained, but not presented for the
sake of brevity. The self-moment is shown in Fig. 9, and it can be
seen that the space-wise values are related to the distributed ones.

Finally, we calculate the needed voltages to be applied at the
piezoelectric patches for both example problems. The results for
using the combined method are shown in Table 1. The calculation
of the voltages is easy. We simply use the first relation of Eq. �7�
with a given self-moment for each patch. The voltages are within
a reasonable range, which is of high relevance for the practical
applicability of our method.

5 Conclusion
The present part of this paper �Part II� on the control of subdo-

mains of elastic plates focused on the practical aspect of using
discrete piezoelectric patch actuators to achieve a desired goal in a
suboptimal manner. In contrast to Part I, we did not try to elimi-
nate the bending motion within the subdomain, but rather to make
it a very simple one with respect to its space-wise distribution.
The main features of this paper were:

• The use of discrete piezoelectric patch actuators incorporat-
ing electromechanical coupling, and

• The calculation of a suboptimal approximate solution for the
actuation to be applied at the piezoelectric patches.

With respect to both features, we were successful. Electrome-
chanical coupling was incorporated by means of effective pi-
ezoelastic stiffness parameters, and we were able to find highly
accurate approximate solutions by combining two methods: one
allowing the use of a high number of piezoelectric patches, and
the other one the mechanical interpretation of the quality of the
approximate solution.

We would also like to mention that the use of discrete piezo-
electric patch actuators has two main practical advantages. One is
that we are able to use the actuation for different goals as well,
and the other one is that we do not need to apply the actuation

Fig. 9 Self-moment applied in subdomain; �=2�100 s−1

Table 1 Voltages to be applied at piezoelectric rings

��rad s−1� V1 �V� V2 �V� V3 �V� V4 �V� V5 �V� V6 �V�

2	500 −11.30 −11.58 −11.93 −12.38 −12.94 −13.63

�rad �s−1� V1 �V� V2 �V� V3 �V� V4 �V�

�rad �s−1� 20.794 21.333 26.594 36.336
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within the whole subdomain we want to control, e.g., in all the
examples, we only applied the actuation within half of the domain
to be controlled. Concerning the problem of controlling the shape
of conformal antennas, we note that our method is of high prac-
tical relevance, because the antenna does not undergo a deforma-
tion, if it is located within the subdomain. With respect to the first
example problem, an antenna of any shape located within r�R is
kept in its nondeformed state. The space-wise constant deflection
we allowed the subdomain to perform would only result in a con-
stant phase shift of the antenna-radiation pattern and, hence,
would not interfere with its performance. The constant phase shift
can be easily corrected electronically, if desired. We also note that
the presence of the antenna itself would not load the structure
since a conformal antenna may only constitute a deposited thin
metal electrode of the desired pattern.

Future research should be targeted toward the subjects of sensor
design and automatic control, such that the structure becomes a
smart structure. The smart structure should then be able to react to
disturbances and to control the motion of a subdomain automati-
cally.
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The Viscoelastic Fiber Composite
with Nonlinear Interface
Effective viscoelastic response of a unidirectional fiber composite with interfaces that
may separate or slip according to uniform Needleman-type cohesive zones is analyzed.
Previous work on the solitary elastic composite cylinder problem leads to a formulation
for the mean response consisting of a stress-strain relation depending on the interface
separation/slip discontinuity together with an algebraic equation governing its evolution.
Results for the fiber composite follow from the composite cylinders representation of a
representative volume element (RVE) together with variational bounding. Here, the
theory is extended to account for viscoelastic matrix response. For a solitary elastic fiber
embedded in a cylindrical matrix which is an nth-order generalized Maxwell model in
shear relaxation, a pair of nonlinear nth-order differential equations is obtained which
governs the relaxation response through the time dependent stress and interface
separation/slip magnitude. When the matrix is an nth-order generalized Kelvin model in
shear creep, a pair of nonlinear nth-order differential equations is obtained governing
the creep response through the time dependent strain and interface separation/slip mag-
nitude. We appeal to the uniqueness of the Laplace transform and its inverse to show that
these equations also apply to an RVE with the composite cylinders microstructure. For a
matrix, which is a standard linear solid �n=2�, the governing equations are analyzed in
detail paying particular attention to issues of bifurcation of response. Results are ob-
tained for transverse bulk response and antiplane shear response, while axial tension
with related lateral Poisson contraction and transverse shear are discussed briefly. The
paper concludes with an application of the theory to the analysis of stress relaxation in
the pure torsion of a circular cylinder containing unidirectional fibers aligned parallel to
the cylinder axis. For this problem, the redistribution of shear stress and interface slip
throughout the cross section, and the movement of singular surfaces, are investigated for
an interface model that allows for interface failure in shear mode.
�DOI: 10.1115/1.2083807�
1 Introduction
This paper presents an analysis of the effective response of

randomly arrayed unidirectional viscoelastic fiber composites con-
taining interfaces whose separation behavior can be captured by
uniform Needleman-type cohesive zones of vanishing thickness
�1�. Ultimately, the goal is to extend the results of Hashin’s effec-
tive property analyses of rigid interface viscoelastic composites
�2,3� to the realm of distributed composite damage. Here, only
damage by interfacial debonding and decohesion are treated.
Other damage mechanisms that may be active in composite ma-
terials exhibiting viscoelastic response, such as matrix or fiber
cracking, crazing, etc, are not considered in this paper.

To begin, consider the solution of the elastic nonlinear interface
problem �4–6�. Because there is no angular dependence of the
elastic fields for both axial tension response and transverse equibi-
axial tension response, the constitutive relations for a single-
composite cylinder are, apart from the form of the coefficients,
identical in structure. The constitutive relation for antiplane shear,
which does have angular dependence of the elastic fields, can be
put in the same form as that of axial tension and transverse equibi-
axial tension provided a one-mode approximation to the fiber-
matrix interfacial slip is utilized and the interface force is cor-
rectly interpreted �see Eq. �28� and the paragraph preceding it�.
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Note that in all cases considered in this paper, we do not allow for
axial coordinate dependence of the elastic or viscoelastic fields. In
the case of interface failure, this amounts to the highly idealized
situation in which failure occurs uniformly at all values of axial
coordinate along the interface. In this paper, antiplane shear and
transverse equibiaxial tension are given detailed treatment but
axial tension is not. This is because the effect on axial tension
response �and associated Poisson contraction� of fiber-matrix in-
terface separation, due to differential contraction between fibers
and matrix, has been shown in �5� to be negligible. �Because of
this, viscoelastic response for this loading case may be obtained
by assuming that the interfaces are rigid as has been done in �3�.�

The approach taken is to consider both antiplane shear and
transverse equibiaxial tension loading together in one general
framework, and to consider a specific load case only when de-
tailed results are desired. This unified treatment brings out fea-
tures common to both cases but at the expense of some additional
algebraic complexity. The general form of the elastic composite
cylinder constitutive relations, valid for both loading configura-
tions, is,

0 = F���,�,�,�+� = − � + �g11�
+ + g12�� + �g13�

+ + g14��

+ �g15�
+ + g16��maxf��� ,

�1�
0 = G���,�,�+� = �g21�

+ + g22�� + �g23�
+ + g24�� + �g25�

+

+ g26��maxf��� .

Note that in Eq. �1�, the functional dependence on matrix shear
modulus �+ is made explicit because ultimately, it will be the only
time dependent material property in the following development.
In Eq. �11� �, � are corresponding mean stress and strain measures

�e.g., axial tension, transverse tension, and antiplane shear�. The
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coefficients �gij, i=1,2, j=1, . . . ,6� assume different forms de-
pending on the loading configuration �see Eqs. �20� and �29�, and
�5�� and are generally functions of fiber transverse bulk modulus
�− and fiber shear modulus �−, three dimensional matrix bulk
modulus1 k+, as well as the fiber volume concentration c. They
may also depend on a nondimensional interface constitutive pa-
rameter � �characteristic interface force length/fiber radius R1�
which arises in the description of the interface force law f . Rela-
tion �11� is the effective property relation for a single composite
cylinder. The internal variable � is the uniform interface displace-
ment discontinuity2 �normalized with respect to characteristic in-
terface force length� and appears in Eq. �11� through expressions
for the uniform strain in the fiber phase and a component of the
displacement discontinuity tensor3. Relation �12� is essentially the
interface boundary condition for the composite cylinder. It de-
pends explicitly on the component of interface traction f �normal-
ized with respect to interface strength �max� and therefore, on the
interface traction-displacement discontinuity constitutive relation
�f����. The stress-strain relation �1�, for a single-composite cylin-
der, can be shown to apply �exactly for axial tension and trans-
verse bulk response or, in approximation for antiplane shear� for
an entire representative volume element �RVE� composed of the
composite cylinders microstructure �4–6�. First, the elastic fields
are obtained from the uniform strain boundary value problem and
the uniform stress boundary value problem. They are then used to
construct the potential and complementary energies �including in-
terfacial energy�, which are then shown to bound the exact re-
sponse of the RVE. It has been demonstrated for axial tension �5�
and transverse equibiaxial load �4� that, similar to the rigid and
linear interface problems �7�, the bounds coincide and therefore an
exact solution governed by Eq. �1� exists. For the antiplane shear
case, it was demonstrated in �6� that, unlike the rigid or linear
interface composite �7�, the bounds do not coincide �this is be-
cause a uniform traction �strain� applied to the boundary does not
result in a uniform boundary strain �traction��. The bounds do
however differ by a term of order O�c4� so that the effective
response may be accurately predicted by either a uniform stress or
strain boundary condition provided that c is not excessively large.

The extension to viscoelastic matrix response begins with Eq.
�1�. In the next section, the general theory is established. The
equations for the solitary viscoelastic composite cylinder problem
under general boundary conditions are presented focusing on re-
laxation and creep conditions. Specific forms of the governing
equations are obtained for a composite that consists of elastic
fibers embedded in a matrix that is elastic in dilatation and an
nth-order generalized Maxwell �Kelvin� model in shear relaxation
�creep�. A potential interface force constitutive model is employed
that allows for interface failure in either normal or shear mode.
Issues of bifurcation of response are treated qualitatively. This is
followed by a discussion on the relationship between the response
of an RVE composed of the composite cylinders microstructure
and the response of a solitary composite cylinder. Owing to non-
linear interface characterization the elastic-viscoelastic analogy is
no longer available as the method to map elastic composite be-
havior to viscoelastic composite behavior. In order to show that
solitary composite cylinder response applies to a composite RVE,
we appeal to the fact that in the Laplace transform domain the
composite is elastic and therefore energies can provide variational
bounds. For a matrix that is a standard solid in shear and an
interface characterized by an exponential force law in normal and
shear mode �8�, model predictions for transverse equibiaxial ten-
sion and antiplane shear are obtained. The paper concludes with a
section on the application of the antiplane shear constitutive rela-

1Note that �=�+�=k+� /3 where �, � are Lame moduli
2For antiplane shear, it is the mode multiplier in the single-mode approximation

�see Eq. �282��.
3The difference between the applied boundary strain and the mean strain of the
composite cylinder.
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tion to the analysis of stress relaxation in the pure torsion of a
circular cylinder containing unidirectional fibers aligned parallel
to the cylinder axis. For this problem, the redistribution of shear
stress and interface slip throughout the cross section, and the
movement of singular surfaces, are investigated for an �exponen-
tial� interface model that allows for interface failure in shear
mode.

2 General Formulation
The equations governing the viscoelastic response of a compos-

ite cylinder are obtained from the equations governing elastic re-
sponse �1� by use of the Laplace transform. Assume that the com-
posite cylinder �Fig. 1� is composed of a viscoelastic fiber, with
time dependent moduli �−�t� ,�−�t�, embedded in a viscoelastic
matrix with time dependent moduli �+�t� ,�+�t�. The mean stress,
strain, and interface separation are now time dependent so that
��t� ,��t� ,��t�, respectively. Of primary interest for the viscoelas-
tic composite cylinder, is the relaxation response through the time
dependent mean stress and interface separation magnitude, and
the creep response through the time dependent strain and interface
separation magnitude.

2.1 Relaxation Response. Assume the boundary condition on
the outer surface �r=R2� is a uniform time dependent strain ��t�.
The elastic-viscoelastic analogy is not applicable in the present
circumstances because the Laplace transformed viscoelastic solu-
tion cannot be obtained from the elastic solution �governed by Eq.
�1�� by employing the following replacement scheme �±

→s�̄±�s�, �±→s�̄±�s�, where an overbar indicates Laplace trans-
form and s is the transform variable. The reason is that for the
nonlinear interface force-separation relation f , L�f���t���
� f�L���t���, where L is the Laplace operator. However, the equa-
tions governing the relaxation response in the s-domain may be
obtained from Eq. �1� by applying the Laplace transformation,

�̄�s� = �g11s�̄+�s� + g12��̄�s� + �g13s�̄+�s� + g14��̄�s� + �g15s�̄+�s�

+ g16��max f̄�s�
�2�

0 = �g21s�̄+�s� + g22��̄�s� + �g23s�̄+�s� + g24��̄�s� + �g25s�̄+�s�

+ g26��max f̄�s� ,

where f̄�s�=L�f���t���=L�f��t��. Note that in Eq. �2�, the physi-
cally reasonable assumption that the fiber is elastic and the matrix
is elastic in dilatation has been made so that, �+�t�=k++ 1

3�+�t�,
where k+ is the �constant� three-dimensional elastic bulk modulus.
In this case, the coefficients gij �in Eq. �2�� are constant and the
inversion of the Laplace transformed Eq. �2� leads to an integral
form of the governing equations:

��t� =�
0

t

�̇+�t − T�K1�T�dT + A1��t� + A2��t� + A3�maxf���t�� ,

�3�

Fig. 1 The viscoelastic composite cylinder
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0 =�
0

t

�̇+�t − T�K2�T�dT + B1��t� + B2��t� + B3�maxf���t�� .

In Eq. �3�,

A1 = g11�
+�0� + g12; A2 = g13�

+�0� + g14; A3 = g15�
+�0� + g16,

B1 = g21�
+�0� + g22; B2 = g23�

+�0� + g24; B3 = g25�
+�0� + g26,

�4�
K1�t� = g11��t� + g13��t� + g15�maxf���t�� ,

K2�t� = g21��t� + g23��t� + g25�maxf���t�� ,

where K1, K2 are linear combinations of functions ��t�, ��t�,
f���t��, and the Ai, Bi coefficients are constants.

In order to explore some of the features of Eq. �3� assume that
the matrix is a generalized nth-order Maxwell model in shear
relaxation:

�+�t� = �
i=1

n

�i
+e−�it, or equivalently,

�5�

�+�t� = �
i=1

n

�i�t�, �̇i�t� = − �i�i�t�, �i�0� = �i
+,

where the �i
+ ,�i are constants. It is shown in the Appendix that

assumption �5� allows Eq. �3� to be reduced to a set of two au-
tonomous nonlinear nth order differential equations for the stress
��t� and interface displacement jump ��t� as given �in the Appen-
dix� by Eq. �A4�.

The stress relaxation behavior may be obtained by applying a
strain history of the form ��t�=H�t��0 �H�t� is the Heaviside step
function, �0 a constant�. The initial values �0=��t=0�, �0=��t
=0� are obtained from Eq. �3� and are given by

0 = F���0,�0,�0,�+�0��
�6�

0 = G���0,�0,�+�0��

where F� and G� have been defined in Eq. �1�. Thus, the initial
values ��0 ,�0� are just the elastic response �1� with shear modu-
lus �+=�+�0�. Equilibrium solutions ��e ,�e�, of the differential
equations �A4� can be obtained by setting ��k�=0, ��k�=0, k
=1. .n. The result is Eq. �6� with �0 ,�0 ,�+�0� replaced by
�e ,�e ,�+���, respectively. The long-term relaxation behavior
��� ,��� follows from, ��=Lim

t→�

��t�, ��=Lim
t→�

��t� and limiting

values, when they exist, can be obtained from the Tauberian or
limiting value theorems �9,10�, Lim

t→�

��t�=Lim
s↓0

�s�̄�s��, Lim
t→�

��t�

=Lim
s↓0

�s�̄�s��. Application of this theorem to the Laplace trans-

formed governing equations �2� implies that the long-term values
satisfy Eq. �6� with �0 ,�0 ,�+�0� replaced by �� ,�� ,�+���, re-
spectively. In obtaining this last result, the following relations

have been employed, Lim
s↓0

�s f̄�s��=Lim
t→�

f��t�=Lim
t→�

f���t��= f����.

A comparison of the equations governing equilibrium solutions
and long-term solutions indicates that both ��e ,�e� and ��� ,���
are solutions of the same system of equations and therefore iden-
tical. This is to be expected because after a long time has elapsed,
the viscoelastic matrix will have essentially relaxed to its equilib-
rium state. Further examination of these equations as well as Eq.
�6� �which governs initial behavior� indicates that they all govern
elastic response �1� with shear modulus �+��� �in the case of

long-term and equilibrium response� and with shear modulus
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�+�0� �in the case of initial response�.
For a matrix which is a standard solid in shear, n=2 and �1

=0. In this case, �A4� reduces to two first-order equations of the
form

�̇ + � = a2��� ,
�7�

a0����̇ + a1��� = 0.

In Eq. �7�, a superimposed dot indicates derivative with respect to
the normalized time t̂=�2t. The coefficients a0 ,a1 ,a2 are related
to the functions F� and G� defined in Eq. �1�, i.e.,

a0��� = D�G���0,�,�+�0�� = B2 + B3�maxDf���

a1��� = G���0,�,�+���� = ��1
+g21 + g22��0 + ��1

+g23 + g24��

+ ��1
+g25 + �2

+g26��maxf���
�8�

a2��� = − D�F���0,�,�+�0��
G���0,�,�+����

DG���0,�,�+�0��

+ �F���,�0,�,�+���� + �� = ��1
+g11 + g12��0 + ��1

+g13

+ g14�� + ��1
+g15 + �2

+g16��maxf��� + �A2

+ A3�maxDf�����̇ ,

where Df��� represents the derivative of f��� with respect to its
argument.

2.2 Bifurcation. The differential equations �7� are of the form
ẋ=h�x ,	� with x= �� ,��T, h= �a2−� ,−a1 /a0�T and 	=�0. The
initial conditions for this system are not arbitrary but predeter-
mined to be solutions of the nonlinear algebraic equations �6�, i.e.,
the constitutive characterization of the constituents fixes the initial
elastic response, which in turn influences the evolutionary re-
sponse. Critical behavior occurs when: �i� initial states suffer bi-
furcation, and �ii� h ceases to exist. For �i�, bifurcation of solu-
tions of Eq. �6� means that initial conditions ��0 ,�0� suffer a jump
discontinuity under increasing values of applied strain �0. In the
case of �ii�, the nonexistence of h means that the ���t� ,��t�� have
a jump discontinuity at a fixed instant in time. It is clear from the
ai coefficients defined in Eq. �8� that h may indeed fail to exist at
certain values of �. Note that equilibrium or long-term response
defined by Eq. �6� �with �0 ,�0 ,�+�0� replaced by �e ,�e ,�+����
may suffer a jump discontinuity as well. An interesting feature of
the response of this class of composite is that bifurcation of initial
condition, bifurcation of equilibria or long-term response, and
nonexistence of h at finite values of x, are all governed by elastic
equations of the same basic form. Thus, bifurcation of equilibria is
governed by

0 = G���0,�e,�
+���� ,

0 = D�e
G���e,�

+���� , �9�

0 = F���e,�0,�e,�
+���� ,

where the second equation, which is independent of �0, deter-
mines �e, the first equation in �9� yields �0, and the third equation
gives �e. Bifurcation of initial states is governed by the same
system �9�, provided the terminal value �+��� is replaced by the
initial value �+�0� �recall Eq. �5� with n=2 and �1=0�. An exami-
nation of the differential equations �7� and �8� reveals that h
ceases to exist when

a0��� = D�0
G���,�+�0�� ,

�10�
=B2 + B3�maxDf��� = 0.

Because a2 ceases to exist when a0 vanishes, we have �from Eq.

�7�� the fact that the mean stress ��t� and the interface separation

Transactions of the ASME



��t� bifurcate simultaneously. Furthermore, note that Eq. �10� is
precisely the condition �92� �with �+��� replaced by the initial
value �+�0�� required for bifurcation of equilibrium states. Thus,
we have the fact that bifurcation of long-time equilibrium states is
governed by elastic equations with terminal shear relaxation
�+���, bifurcation of initial states is governed by the same elastic
equations except with initial shear relaxation �+�0� �replacing
�+���� and nonexistence of h at finite values of � is governed by
an identical elastic condition �10� required for bifurcation of ini-
tial states. Physically, the breakdown in h is the most interesting
since it gives rise to a discontinuity in the separation and the stress
at some stage in their evolution. Because B2, B3 are generally
positive, Eqs. �8� and �10� indicate that bifurcation occurs when
Df���
0, i.e., the interface force is on the descending branch of
the interface force-separation curve.

2.3 Creep Response. A parallel development applies for
creep response. Thus, for a traction boundary condition applied to
the composite cylinder, the equations governing elastic response
are:

0 = F���,�,�,J+� = − � + �q11J
+ + q12�� + �q13J

+ + q14�� + �q15J
+

+ q16��maxf��� ,
�11�

0 = G���,�,�,J+� = �q21J
+ + q22�� + �q23J

+ + q24�� + �q25J
+

+ q26��maxf��� + �q27J
+ + q28�� ,

which are analogous to the equations governing elastic response
of a composite cylinder subject to an applied strain boundary con-
dition �1�. Because effective response for this class of composite
is self-consistent �4–6�, Eqs. �1� and �11� are reciprocal.4 Apply to
the outer surface of a composite cylinder �with unit normal n
=er� the uniform time dependent traction ��t�=H�t��0, where �0
is constant. Assume that matrix response is governed by a gener-
alized nth-order Kelvin model in shear creep so that

J+�t� = �
i=1

n

Ji
+�1 − e−�i�t� + �n+1� t, or equivalently,

�12�

J+�t� = �
i=1

n

Ji�t� + �n+1� t, J̇i�t� = �i��Ji
+ − Ji�t�� ,

where Ji
+ ,�i� are constants. By employing arguments similar to

those used to derive relaxation response, it can be shown that two
nth-order nonlinear differential equations of form �A4� govern
��t� ,��t�.

The initial values �0=��t̂=0�, �0=��t̂=0� are governed by

0 = F���0,�0,�0,J+�0�� ,
�13�

0 = G���0,�0,�0,J�0�
+ � ,

and represent the initial elastic response �11� with creep modulus
J+�0�.

Long-term and equilibrium solutions are identical to each other
and describe the elastic response with creep modulus �+���, i.e.,
Eq. �13� with J+�0� replaced by J+��� and ��0 ,�0� replaced by
��e ,�e� or ��� ,���. When n=2, �1�→�, �3�=0, we recover a ma-
trix that is a standard solid in shear creep function �as well as
elastic in bulk response�, i.e., J+�t�=J0

+−J2
+e−��2t ,J0

+=J1
++J2

+,
where the creep constants �J0

+ ,J2
+ ,��2� can be expressed in terms

of relaxation constants �1
+ ,�2

+ ,�2. When this is the case, the equa-
tions governing the creep response reduce to two-first order equa-
tions of the form,

4
For antiplane shear, this is only approximately true �6�.
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�̇ +
1

1 + ��

� = b2��� ,

�14�
b0����̇ + b1��� = 0,

where, as before, we have assumed that a superimposed dot indi-
cates derivative with respect to the normalized time t̂=�2t and
��=�2

+ /�1
+. The coefficients b0 ,b1 ,b2 are related to the functions

F� and G� defined in Eq. �11�, i.e.,

b0��� = q23J0
+ + q24�1 + ��� + �q27J0

+ + q28�1 + �����q13J
+�0� + q14�

+ �q25J0
+ + q26�1 + ��� + �q27J0

+ + q28�1 + �����q15J
+�0�

+ q16���maxDf���

b1��� = �q21J0
+ + q22 + �q27J

+�0� + q28��q11J0
+ + q12���0 + �q23J0

+

+ q24 + �q27J
+�0� + q28��q13J0

+ + q14��� + �q25J0
+ + q26

+ �q27J
+�0� + q28��q15J0

+ + q16���maxf��� �15�

b2��� =
1

1 + ��

��q11J0
+ + q12��0 + �q13J0

+ + q14�� + �q15J0
+

+ q16��maxf���� + ��q13J
+�0� + q14� + �q15J

+�0�

+ q16��maxDf�����̇

The differential equations �14� are of the form ẋ=h�x ,	� with x
= �� ,��T, h= �b2−� / �1+��� ,−b1 /b0�T and 	=�0. The vector field
h ceases to exist when

0 = b0��� = q23J0
+ + q24�1 + ��� + �q27J0

+ + q28�1 + �����q13J
+�0�

+ q14� + �q25J0
+ + q26�1 + ��� + �q27J0

+ + q28�1 + �����q15J
+�0�

+ q16���maxDf��� . �16�

From Eq. �153� b2 ceases to exist when b0 vanishes. Therefore, the
mean effective strain ��t� and the interface separation ��t� bifur-
cate simultaneously. It can be shown that the bifurcation condition
for initial states D�G��� ,J+�0�� is precisely the condition �16�
required for the nonexistence of h. Thus, we have the fact that
bifurcation of long-time equilibrium states is governed by elastic
equations with terminal creep modulus J+���, bifurcation of initial
states is governed by the same elastic equations with initial creep
modulus J+�0�, and nonexistence of h at finite values of � is
governed by an identical elastic condition �16� required for bifur-
cation of initial states. This is entirely analogous to relaxation
behavior. Equation �16� is of the form �10�, which has been con-
sidered previously.

3 Effective Composite Response
Here, we demonstrate that the effective response of a viscoelas-

tic nonlinear interface composite RVE, composed of the compos-
ite cylinders microstructure �7�, is governed by the equations for
the single-composite cylinder. Recall that the composite cylinders
microstructure consists of composite cylinders of varying dimen-
sions down to the vanishingly small, such that the fiber volume
concentration c remains constant for each composite cylinder.5

Conceptually, the effective response of such a composite RVE is
expected to relate to the response of the individual composite
cylinders comprising it. For the elastic case, variational arguments
can be used to show that the effective response of a nonlinear
interface composite cylinder also applies to an entire composite
RVE �4–6�. For the viscoelastic RVE, there is no appropriate en-
ergy bounding theorem so a different approach must be adopted.
When the composite has rigid or linear interfaces, the standard

5An additional constraint is that the force length ratio � remains constant for each

composite cylinder �4�.
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tool to pass from the response of a single viscoelastic composite
cylinder to the effective response of a viscoelastic RVE is the
elastic-viscoelastic analogy �2,3�. As stated previously, the elastic-
viscoelastic analogy does not apply here because, for the nonlin-
ear interface force separation relation, L�f���t���� f�L���t���. In
this section, another approach is developed based on the unique-
ness of Laplace transform and the fact that a viscoelastic compos-
ite cylinder corresponds to an elastic composite cylinder in the
transform domain.

First, if the force separation law f��� is potential, then there

exists a function p��̄�s�� such that, p��̄�s��= p�L���t���= f̄�s�
=L�f���t���, with p��̄�s�� potential in �̄�s�. To show this, assume
that functions f ��= f� and � are integrable over a finite interval
�a,b�, and that they are of exponential order. Then it can be proven

that f̄ , �̄ are analytic functions of s �see �9��. Now d�̄ /ds�0,
Re�s��a, a a real constant. This follows by differentiating the
definition of the Laplace transform of �̄�s� with respect to s and
noting that ��t� does not vanish on �0,��. Thus, since d�̄ /ds
�0,Re�s��a; then, by the inverse function theorem, there is an

analytic inverse s= �̄−1��̄�s��. The composite function p= f̄ � �̄−1 is
therefore analytic and potential.

Equations �2� governing the relaxation response for a single-
composite cylinder in the s domain can now be written as

�̄�s� = �g11�s�s�̄+�s� + g12�s���̄�s� + �g13�s�s�̄+�s� + g14�s���̄�s�

+ �g15�s�s�̄+�s� + g16�s���maxp��̄�s��
�17�

0 = �g21�s�s�̄+�s� + g22�s���̄�s� + �g23�s�s�̄+�s� + g24�s���̄�s�

+ �g25�s�s�̄+�s� + g26�s���maxp��̄�s�� .

The form of Eq. �17� suggests that the viscoelastic composite
cylinder in the t domain can be viewed as a geometrically similar
elastic composite cylinder in the s domain, with the interface force
separation law f��� being replaced by its Laplace transformed
form p��̄�s�� and the material properties being modified according
to the replacement scheme �±→s�̄±�s� , �±→s�̄±�s�. In other
words, if Vi represents the equations for a viscoelastic composite
cylinder in the t domain, then there are unique equations Ei for an
elastic composite cylinder in the s domain such that, Ei=L�Vi� or
Vi=L−1�Ei�. Now in the s domain where the composite is elastic,
it can be proven6 �4–6� that the effective response of an RVE is
governed by the same equations governing the elastic composite
cylinder, i.e., �Eq. �17��. This suggests that, for the RVE in the s
domain, there is an effective homogeneous continuum with unique
equations E satisfying, E=Ei. Finally, by application of the in-
verse Laplace transform, there exist unique equations V governing
the response of a viscoelastic homogeneous continuum in the t
domain, V=L−1�E�. Because E=Ei, sets E and Ei must govern the
same effective response in the s domain. Because of the unique-
ness of the Laplace transform and its inverse, V and Vi will predict
the same effective response in the t domain, i.e.,

V = L−1�E� = L−1�Ei� = L−1�L�Vi�� = Vi. �18�

Therefore, the response predicted by Eq. �7� is identical to that of
Eq. �14�, and both predict the response of an RVE of the vis-
coelastic composite.

The above argument applies to transverse equibiaxial tension
and axial tension where energy bounds for the elastic problem
coincide. For antiplane shear, where the energy bounds �for the
nonlinear interface problem� do not coincide, a modification is
required. Let Vi

� ,Vi
 represent sets of equations for the solitary

viscoelastic composite cylinder in the t domain under uniform

6This is exactly true for equibiaxial and axial tension load. For antiplane shear,

bounds are required �see below�.
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strain and uniform stress boundary conditions, respectively. Then
there are unique sets of equations Ei

� ,Ei
 in the s domain, in the

form governing an elastic composite cylinder, such that, Ei
�

=L�Vi
��, Ei

=L�Vi
�. Now for the elastic problem, it has been

shown in �6� using variational bounding that the effective anti-
plane shear response of the RVE is bounded by solutions to the
equations governing the elastic composite cylinder under uniform
strain and uniform stress boundary conditions, respectively. The
associated energy bounds can be shown to differ by a term of
order O�c4�. Thus, in the s domain where the composite cylinder
is governed by equations that are elastic in form this suggests that,
for the RVE in the s domain, there is an effective homogeneous
continuum, whose effective response is bounded by solutions to
unique equations E� ,E satisfying, E�=Ei

�, E=Ei
. The difficulty

arises when we try to apply the inverse Laplace transform to ob-
tain bounds on the response in the t domain. Generally, bounds on
the Laplace transform do not convert into bounds on the inverse
transformed function. However, because the difference in the “en-
ergy” bounds in the s domain is proportional to the product of a
function of s and a constant term of order O�c4� we can assert that
if the response of E� and E is nearly the same �i.e., for c not too
large� in the s domain, then in the t domain, V�=L−1�E�� and V

=L−1�E� will be nearly the same as well. Because of the unique-
ness of the Laplace transform and its inverse, V� ,V should pre-
dict the same effective response as Vi

� ,Vi
, respectively, in the t

domain, i.e.,

V� = L−1�E�� = L−1�Ei
�� = L−1�L�Vi

��� = Vi
�,

�19�
V = L−1�E� = L−1�Ei

� = L−1�L�Vi
�� = Vi

.

4 Transverse Equibiaxial Tension
In this section, we specialize the preceding results to obtain the

time dependent effective transverse bulk response of an RVE
composed of the composite cylinders microstructure. Interface
separation response is assumed to be uniform at all points along
the cylindrical interface �Fig. 1�. Unless otherwise noted for the
remainder of the paper, assume that the matrix is a standard solid
in shear. Because it often happens that a composite system con-
sists of a fiber that is stiffer than the matrix by an order of mag-
nitude, �e.g., glass fiber reinforced epoxy matrix�, it is further
assumed that the fiber is perfectly rigid. In many of the preceding
equations, this amounts to setting �−→�. For transverse equibi-
axial tension �see Fig. 1� with an applied strain boundary condi-
tion given by displacement vector u=��t�R2er on r=R2, the gij
coefficients are:

g11 = − 2, g12 = 0, g13 = 2�, g14 = 0, g15 =
1

�− , g16 = 1,

g21 =
4

3
, g22 = k+, g23 = − �	1 +

c

3

, g24 = − c�k+, �20�

g25 = −
1 + c/3

2�− , g26 = −
�−�1 − c� + ck+

2�− ,

which help to determine the coefficients �8� of the differential
equations �7�. For an applied traction boundary condition, with
traction vector s�er�=��t�er, the qij coefficients are:

q11 = −
1

2
, q12 = q13 = 0, q14 = �, q15 =

1

2
, q16 =

1

2�− ,
�21�
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q21 =
1

2
, q22 = 0, q23 = c�k+, q24 =

1

3
c�; q25

=
k+ − �−

2�− c, q26 =
c

6�− ,

q27 = − k+, q28 = −
1

3
,

which help to fix the coefficients �15� in the governing equations
�14�.

In order to proceed, further assume that the interface is charac-
terized by a simple exponential constitutive relation that allows
for interface failure in normal mode �Fig. 2�,

�maxf��� = �max�e1−�, �maxDf��� = �max�1 − ��e1−�,

�22�

where �=w /� ,w is the ratio of the normal interface displacement
jump to fiber radius, and � is the characteristic interface force
length ratio introduced previously. This force law was developed
by Ferrante et al. �11� primarily for crystalline interfaces and it,
along with its variants, has been utilized in numerous debonding
analyses. Here Eq. �22� is regarded as phenomenological with the
two parameters � ,�max to be determined from experiment. Note
that bifurcation occurs when ��1. This last result follows from
Eq. �22� and the fact that bifurcation occurs when Df���
0.
Furthermore, Eqs. �92� and �10� are of the same form and, when
combined with Eq. �22�, can be written as

�1�1 − ��e1−� + �2 = 0, �23�

where �1 ,�2 are positive constants defined in Eqs. �92� and �10�.
Bifurcation condition �23� has been discussed in detail in �12�.
Solutions to �23� are given by, �=1−W�−�2 /�1� where W :x
→W�x� is the multivalued Lambert W function �13� defined to be
the solution y to the equation yey =x. Because W is defined on the
interval �−e−1 ,��, and is such that W�−e−1�=−1, it follows that a
necessary condition for bifurcation is �2e1 /�1�1. A graph of
solution � indicates that there will generally exist two bifurcation
points, the exception being when �2 /�1=e−1 when there is only
one bifurcation point.

4.1 The Voided Composite. For the voided rigid interface
and linear interface composite, the problems are linear and the

Fig. 2 The normal interface force law f and Df
elastic-viscoelastic correspondence principle may be utilized to

Journal of Applied Mechanics
obtain the effective relaxation and creep response directly from
the effective elastic response. Here, the goal is to recover known
results from the general formulation.

For relaxation response of the voided composite set �max=0 in
the coefficients �8�. The differential equations �7� become linear
with solution given by

���t̂� = ��e + ���0 − ��e�e−p1t̂

�24�

�̂�t̂� = �̂e −
c1

1 − p1
e−p1t̂ + ��̂0 − �̂e +

c1

1 − p1
�e−t̂

where

��e =
�k + 4/3

c�k + �1 + c/3�
�0, ��0 =

�k + 4�1 + ���/3
c�k + �1 + c/3��1 + ���

�0,

�̂e = 2�0
�1 − c���k + 1/3�
c�k + �1 + c/3�

,

�̂0 = 2�0
�1 − c���k + �1 + ���/3�
c�k + �1 + c/3��1 + ���

�1 + ��� , �25�

c1 =
c�1 − c��k

2��
2 �0

�c�k + �1 + c/3��1 + ����2�c�k + �1 + c/3��
,

p1 =
c�k + �1 + c/3�

c�k + �1 + c/3��1 + ���
.

In Eq. �25�, the nondimensional constants �k ,��, and the normal-
ized stress �̂, are defined by

�k =
k+

�1
+ , �� =

�2
+

�1
+ , �̂ =

�

�1
+ . �26�

Note that �*�t� is the effective time dependent relaxation bulk
modulus, �*�t̂�= �̂�t̂��1

+ /2�0. The quantities �̂0 and �̂e are the ini-
tial and equilibrium stresses normalized with respect to �1

+, while
��0 and ��e are the initial and equilibrium interface separations,
respectively. It is readily seen from Eq. �25� that �̂0��̂e and
��0
��e, which means that for the voided composite under re-
laxation boundary condition, it is always true that the stress re-
laxes and interface separation increases.

The creep compliance of the voided composite can be obtained
from Eqs. �24�–�26�, together with the reciprocal relationship be-
tween the Laplace transform of the moduli or, by direct integra-
tion of Eq. �14�, following the same procedure used to obtain the
relaxation modulus. It can be shown that ��0
��e and �0
�e,
which means that for the voided composite under creep boundary
condition the strain always creeps and interface separation always
increases.

4.2 The Rigid Interface Composite. The rigid interface
composite corresponds to �=0 and �̇=0 so that interface force f
is constant and determined by Eqs. �72� and �8� in terms of the
applied strain �0, concentration c, and constitutive parameters.
Consider relaxation response. The differential Eqs. �71� and �8�
together with initial condition �6� have solution for the relaxation
bulk modulus,

�*�t̂� = k+ +
1

3
�+�t̂� +

c

1 − c
�k+ +

4

3
�+�t̂�� . �27�

It follows from Eq. �27� that the stress ��t̂� will relax as �+�t�
decreases with time. Equation �27� is consistent with the relax-
ation modulus obtained in �3�.

The bulk creep compliance for the rigid interface composite can
be obtained either from the reciprocal relationship between the
Laplace transforms of the moduli or, from the governing equations

�14� and �15� following the same procedure used to obtain the
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relaxation modulus above. Note that while Eq. �27� is generally
valid for any �+�t�, the effective time dependent bulk creep com-
pliance can only be obtained in closed form for the simplest of
viscoelastic models. For the standard solid in shear, it can be
shown that the strain ��t̂� increases with time.

4.3 The Nonlinear Interface Composite. The response of
the nonlinear interface composite is obtained by numerical solu-
tion of Eq. �7� �relaxation� or Eq. �14� �creep�. In the results that
follow, assume that the interface can be modeled by the interface
force law �22�. Let the geometrical and constitutive parameters
have the following values: �k=2.407, ��=9/10, c=1/2, and
�max=E+ /50, where E+ is the matrix elastic modulus.

Consider relaxation response with equibiaxial strain boundary
condition such that ��t�=H�t��0 and �0=0.012. Figure 3 depicts
the normalized stress response �̂�t̂� for varying characteristic
length ratios ���. Also included are curves depicting the limiting
behavior of the rigid interface composite and the voided compos-
ite. Figure 3 indicates that the effect of decreasing � is to: �i�
decrease the initial stress and �ii� decrease the �long-term� equi-
librium stress provided the interface separation is on the descend-
ing branch of the interface force-separation curve ��=0.01, �
=0.002�. For the two other cases shown ��=0.03, �=0.02�, the
interface separation is on the ascending branch of the force-
separation curve and the opposite trend is observed. Furthermore,
for the parameter values shown, the stress relaxes. For extremely
small values of � however, the stress may creep. In these circum-
stances, bifurcation can occur �see Fig. 6�.

Figures 4 and 5 show interface separation ��t� and interface
force f���t��, respectively. Several distinct kinds of behavior are
observed depending on force length parameter �. As indicated in
Fig. 4, when �=0.002 and 0.03, the interface separation ��t� does
not relax but increases with time. When �=0.03, this is accompa-
nied by an increasing interface force f���t�� and the process hap-
pens prior to the attainment of the interface strength �max �i.e., on
the ascending branch of the interface-separation curve�. This kind
of behavior gives rise to creep driven loading of the interface.
When �=0.002, increasing ��t� is accompanied by a decreasing
interface force f���t�� which happens after the interface strength

Fig. 3 Stress response under relaxation boundary condition;
�0=0.012
has been attained �i.e., on the descending branch of the interface-
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separation curve�. This kind of behavior leads to creep driven
relaxation of the interface force. Note that when �=0.02, both the
interface separation ��t� and the interface force f���t�� decrease.
In this case, the interface unloads under a relaxation of interface
separation. For �=0.01, the interface separation ��t� decreases
accompanied by an increase in interface force f���t��. This indi-
cates that the increasing interface force occurs after the interface
strength has been attained, on the descending branch of the
interface-separation curve. This kind of self-repairing interface re-
sponse is unrealistic and ultimately is a consequence of using a
potential interface force separation law.

For �=0.002 and �0=0.0054, the evolution of mean stress, in-
terface separation, and interface force are depicted in Fig. 6. As
can be seen from the figure, they all experience a jump disconti-

Fig. 4 Interface separation under relaxation boundary condi-
tion; �0=0.012

Fig. 5 Interface force under relaxation boundary condition;

�0=0.012
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nuity at a normalized time of approximately t̂4.9. This jump
corresponds to bifurcation of the interface and occurs because �̇
ceases to exist at finite values of �. The behavior is governed by
elastic condition �10� or �23� required for bifurcation of initial
states �see discussion following Eq. �10��. For large � values, e.g.,
�=0.01, 0.02, or 0.03, discontinuous behavior will not occur
which is consistent with the results of Levy �4� and also with the
results discussed in the previous section, i.e., that small � values
and large �max values favor bifurcation.

Consider now the creep response characterized by an applied
traction boundary condition with normalized applied stress �̂
=�0 /�1

+=0.03 �Assume that parameter values used for
c ,�� ,�k ,E+ ,�max are unchanged.� Figure 7 depicts the strain re-

Fig. 6 Bifurcation under relaxation boundary condition; �
=0.002, �0=0.0054

Fig. 7 Strain response under creep boundary condition; �̂

=0.03

Journal of Applied Mechanics
sponse ��t� for varying characteristic length ratios �. Also in-
cluded are curves depicting the limiting behavior of the rigid in-
terface composite and the voided composite. As shown in the
figure, the strain creeps for most of the cases. However, for ex-
tremely small � values, e.g., �=0.005, with �̂=0.054, the strain
may relax.

Figures 8 and 9 show the response of interface separation ��t�
and corresponding interface force f���t��, respectively. For �
=0.02, 0.03, the interface separation ��t� increases and the inter-
face force increases as well. This behavior occurs on the ascend-
ing branch of the interface-separation curve, prior to the attain-
ment of the interface strength and gives rise to creep driven
loading. When �=0.005, 0.01, and �̂=0.03 �Fig. 8�, the interface
separation ��t� decreases. Because this decreasing interface sepa-

Fig. 8 Interface separation under creep boundary condition;
�̂=0.03

Fig. 9 Interface force under creep boundary condition; �̂

=0.03
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ration occurs on the ascending branch of the interface force-
separation law, the interface force f���t�� decreases as well. In
this case, the interface unloads with relaxing interface separation.
For �=0.005 and �̂=0.054, the interface separation ��t� decreases
on the descending branch of the interface force-separation law so
that the interface force increases. This kind of behavior leads to
self-repair of the interface of the kind noted previously.

Finally, for �=0.01 and �̂=0.058, the mean strain response,
interface separation, and interface force are depicted in Fig. 10.
The interface separation ��t� increases but the corresponding in-
terface force f���t�� decreases. Thus, the behavior occurs after the
attainment of the interface strength, on the descending branch of
the interface-separation curve, and the interface force relaxes un-
der creep. Furthermore, all of the curves experience a jump dis-
continuity at normalized time t̂2.9. This jump corresponds to
bifurcation of the interface and, as stated previously, occurs be-
cause �̇ ceases to exist at finite values of �. This behavior is
governed by elastic condition �16� required for bifurcation of ini-
tial states. For larger � values, e.g., �=0.02 or 0.03, bifurcation
will not occur consistent with the conclusion that small values of
� and large values of �max, favor bifurcation.

5 Antiplane Shear
In what follows, the results obtained in Secs. 2 and 3 are used

to obtain the time dependent effective antiplane shear response of
an RVE composed of the composite cylinders microstructure. In-
terface slip response is assumed to be uniform at all values of
axial coordinate for a fixed polar angle �Fig. 1�. This is because,
unlike transverse equibiaxial tension in which the separation is
uniform around the interface, antiplane shear gives rise to inter-
face coordinate �polar angle� dependent slip. Here a single-mode
approximation for the slip is utilized as outlined in �6�. This as-
sumption gives rise to governing equations of the form �1�, pro-
vided we take f to be the projection of the normalized shear-slip
interface force law g on the first mode, i.e.,

maxf��� =
max

�
�

0

2�

g��,��cos �d�,
w

�
= � cos � . �28�

For an applied strain boundary condition ��0=�0� the coefficients

Fig. 10 Bifurcation under creep boundary condition; �
=0.01, �̂=0.058
gij in Eq. �1� are
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g11 =
1 − c

1 + c
, g12 = 0, g13 = 0, g14 = 0; g15 = 0, g16 =

2c

1 + c
,

g21 = − 2, g22 = 0; g23 = ��1 + c�, g24 = 0; �29�

g25 =
1 + c

�− , g26 = 1 − c ,

and, when a traction boundary condition ��0=0� is applied the
coefficients qij are

q11 =
1 + c

1 − c
, q12 = 0; q13 = 0, q14 = 0; q15 = −

2c

1 − c
,

q16 = 0, �30�

q21 = − 2, q22 = 0; q23 = 0, q24 = �1 − c��; q25 = 1 + c ,

q26 =
1 − c

�− ; q27 = 0, q28 = 0.

In order to proceed further, assume that the interface is charac-
terized by a simple exponential constitutive relation �8� that al-
lows for interface failure in shear mode given by g�w /��
=e1/2�w /��e−�w / ��2/2. Then, Eq. �28� implies that

maxf��� = maxe
1/2�e−�2/4�I0	�2

4

 − I1	�2

4

� ,

�31�

Df��� = 	 1

�
− �
 f��� + 2e�1/2−1/4�2�I1	1

4
�2
 ,

where I0 , I1 are modified Bessel functions of the first kind of order
zero and one, respectively. The graphs of g, f , and Df are shown
in Fig. 11. From Eqs. �10�, �26�, �29�, and �4�, and Fig. 11 it
follows that a necessary condition for relaxation bifurcation is

��1 + c��1 + ���
���1 − c� + �1 + c��1 + ���/� f�


 0.5897, �32�

where � f =�− /�1
+, �=max/�1

+. It is apparent from Eq. �32� that
small values of � and large values of � �or max� favor bifurca-
tion.

In what follows, the creep response to an applied boundary

Fig. 11 The shear interface force law g and its first mode f and
Df
traction is discussed. Relaxation response will be discussed in the
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following section in the context of pure torsion of a circular cyl-
inder. For the creep boundary condition, a necessary condition for
bifurcation is

��1 − c��1 + ���
���1 + c� + �1 − c��1 + ���/� f�


 0.5897. �33�

A comparison of Eqs. �32� and �33� indicates that, for the same
fiber composite, bifurcation under a creep boundary condition oc-
curs more readily than under a relaxation boundary condition.

5.1 The Voided Composite. The creep compliance of the
voided composite can be obtained by direct integration of Eq.
�14�. The result is

���t̂� = ��0�1 + ���1 − e−pt̂�� ,

��t̂� = J*�t̂�0 �34�

=�1 + ���1 − e−pt̂���0 =
1 + c

1 − c
J+�t̂�0,

where

��0 =
2̂

�1 − c��1 + ���
, �0 =

1 + c

�1 − c��1 + ���
̂, ̂ =

0

�1
+ ,

�35�

p =
1

1 + ��

=
�2�

�2
,

and J*�t� is the effective shear creep compliance of the fiber-
reinforced composite. It is clear that both the shear strain and the
interface slip, creep under a traction boundary condition. By con-
trast, for the voided composite under a relaxation boundary con-
dition, the shear stress relaxes and interface slip remains constant.

5.2 The Rigid Interface Composite. The shear creep com-
pliance for the rigid interface composite follows by integrating
�14� and is given by ��t̂�=J*�t̂�0= �1+���1−e−pt̂���0= �1
−c�J+�t̂�0 / �1+c�, where �0= �1−c� / ��1+c��1+���� is the initial
strain. This result is consistent with the results obtained in �3�.
Note that for relaxation response, it can be shown that the stress
�t̂� is proportional to the product of the applied strain �0 ,�+�t̂�
and the term �1+c� / �1−c�.

5.3 The Nonlinear Interface Composite. The response of
the nonlinear interface composite can be obtained by numerical
solution of Eqs. �7� �relaxation� or �14� �creep�. Detailed numeri-
cal results are not presented here since they are qualitatively iden-
tical to the transverse equibiaxial tension case. The basic phenom-
ena that occur for equibiaxial tension also occur for antiplane
shear, i.e., creep driven loading of the interface, creep driven re-
laxation of the interface, interface self-repair, bifurcation, etc. In
Sec. 6, antiplane shear relaxation will be considered from the
standpoint of torsion of circular rods.

6 Pure Torsion of a Viscoelastic Composite Cylinder
For pure torsion of a solid or annular circular cylinder com-

posed of viscoelastic material modeled by constitutive relation
�7�, the relevant deformation mode is antiplane shear. Because the
geometry and loading are rotationally symmetric about the longi-
tudinal axis, cross sections will rotate about the cylinder axis but
will not warp. In the following subsection, the response of an
elastic composite cylinder under an applied rate of twist is briefly
summarized. For a detailed treatment of this problem see �14�.
Note that when specific results are desired the form of the inter-
face force-slip relation employed is given by Eq. �31�.

6.1 Elastic Cylinder. Let the angle of twist and the rate of

twist at axial coordinate z be ��z� and �=d� /dz respectively,
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where � is uniform. The shear strain � �measured in radians� is
�=r�. The stress tensor field is S=�e� � ez+ez � e�� and, from
Eqs. �1� and �29�,  is governed by

̂ =
1 − c

1 + c
�r +

2c

1 + c
�f��� ,

�36�
0 = �1 + c��� + �1 − c��f��� − 2�r ,

where ̂= /�+ and �=max/�+ 7. This stress field satisfies the
equilibrium equation div S=0 trivially. Note that the torque,
which is the moment resultant of ̂, is obtained in the usual way
by integration over the cross section.

If � is regarded as the bifurcation parameter and a location in
the cross section is fixed then a necessary condition for bifurcation
follows from Eq. �362� and is

��1 + c� + �1 − c��Df��� = 0 or Df��� = −
��1 + c�
��1 − c�

. �37�

Bifurcation points ��̄ , �̄� are solutions to Eqs. �36� and �37�. Be-
cause � and r play an equivalent role in Eq. �36�, a jump in the
slip field may occur across a singular surface r=r*. When this
occurs, a jump in the stress field across the singular surface r
=r* is expected as well. The jump condition �s�n��=0, where
s�n�=Sn is the traction vector on the singular surface with normal
n=er, is trivially satisfied for shear stress field S=�e� � ez+ez

� e��. The equation governing the existence of singular surfaces is
simply Eq. �37� and, from Fig. 11, a singular surface will exist
when

��1 + c�
��1 − c�


 0.5897, �38�

i.e., there are two distinct solutions to Eqs. �37� �for positive ��.
Denote these two solutions by �̄1 , �̄2 with �̄1
�̄2. When Eq.
�38� is not satisfied, �37� will have no solutions and a singular
surface will not exist. It is apparent from Eq. �38� that small
values of � and large values of � �or max� favor the existence of
a singular surface.

Denote the two values of � at the singular surface, and the
jump across the surface, as follows, �−=Lim ��r� ,r↑r*, �+

=Lim ��r� , r↓r*, and ���=�+−�−. Note that we are choosing
�̄1=�− as the lower value of the jump, as opposed to choosing
�̄2=�+ as the higher value of the jump, since �̄2=�+ cannot be
attained by a continuous increase in strain � �or radius r=� /��
from the reference state �see Fig. 12�.

At some value of rate of twist �, assume there is a singular
surface at r=r*. To get r*, first solve Eq. �37� and denote the
smaller of the two solutions by �̄1=�−. r*, then follows from Eq.
�362�

0 = �1 + c���− + �1 − c��f��−� − 2�r* or r* =
�

�
, �39�

where 2�= �1+c���−+ �1−c��f��−� is constant, fixed by the
concentration and the constituent properties but independent of
twist rate �. The jump in the interface slip field ��� across r* is
obtained after solving Eq. �39� for the second solution �+���−�.

From Eq. �39�, the critical value of angle of twist �* for the
singular surface to initiate at the outer cylindrical surface of the
cylinder, i.e., r*=b, is �*=� /b. The ultimate value of angle of
twist �u is that value of � for which the singular surface has
traversed the entire section. It is obtained, for an annular cylinder
of inner radius a, by letting r*=a, or, �u=� /a. Note this implies
that, for the solid cylinder, an infinite rate of twist �u is required

7 ˆ +
Note that for viscoelastic composite response,  is taken to be  /�1.
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for the singular surface to traverse the entire section. Therefore,
for the solid cylinder, there will always exist a cylindrical core r
� �0,r*� of minimally slipped material where r* is given by Eq.
�39�.

The velocity of propagation of the singular surface can be ob-
tained by differentiating Eq. �39� with respect to the rate of twist
�, i.e., v*=dr* /d�=−� /�2. Note that both jumps in interface slip
and shear stress occur across the same surface r=r* and that
����0 while ��
0. The stress values −=Lim �r� ,r↑r*, +

=Lim �r� ,r↓r* at a singular surface can be obtained by substi-
tuting r* and �−��+� into Eq. �361�, and after rearrangement �

±

= �1−c���± /2+ �1+c��f��±� /2, which are constant for fixed val-
ues of concentration and constituent properties. The jump in stress
is ��=+−−.

6.2 Viscoelastic Cylinder. The solution to the elastic torsion
problem under a uniform rate of twist �0 gives the shear stress 0,
shear strain �0, and interface slip magnitude �0 at any point
throughout the cross section. Now, if the matrix is viscoelastic and
the composite constitutive relation is given by Eq. �7�, the relax-
ation response of the circular cylinder can be obtained by holding
it under a fixed rate of twist �0. When this is true, the shear strain
will be constant �time independent� and given by �0=r�0.

For this problem, the redistribution of shear stress and interface
slip magnitude is sought throughout the cross section. Further-
more, if an elastic singular surface forms on initial application of
the twist angle, its movement during relaxation can be readily
investigated. The analysis is carried out by numerically integrating
the first-order differential equations �7� using initial values from
governing equation �6�. Here, it is assumed that the geometrical
and constitutive parameters have the following values: �=1/18,
��=1/9, c=1/4, and �0=0.06.

For �=0.05, Fig. 13 indicates that the shear stress and slip
magnitude relax for the entire cross section. The distributions of
initial and long-term �t̂=25� values of the shear stress and slip
magnitude are shown in the figure by dashed and solid lines,
respectively. When �=0.02, the relaxation curves of shear stress
and slip magnitude are shown in Fig. 14. Note that the shear stress
creeps within the annular region r1
r
r2 �the shear stress does
not change at r=r1,2�. Within this region, ��1 so values of in-
terface force are on the descending branch of the interface force
slip curve �Fig. 11�. Because the interface slip � relaxes, the in-
terface force maxg��� must increase giving rise to self-repairing
interface behavior.

With further decrease in ���=0.005�, a singular surface will
exist initially �t=0� at r1

* as shown by the dashed lines in Fig. 15.

Fig. 12 Notation
�The distributions of shear stress and slip magnitude after relax-
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ation are shown by solid lines�. The figure indicates that the sin-
gular surface moves outward to r2

*. This suggests that the initially
slipped region �r1

* ,1� undergoes partial self-repair through relax-
ation, i.e., �r1

* ,r2
*� becomes only minimally slipped after

relaxation.
Time dependent torque T, corresponding to a given value of the

twist rate �0, is the moment resultant of the shear stresses acting
on the cross section

T�t̂� =�
a

b

2��r, t̂�r2dr , �40�

which is the torsion formula in implicit form. Clearly, T�0�=T0 is
the initially applied torque required to produce the rate of twist �0

Fig. 13 Stress relaxation of a viscoelastic circular cylinder �

=0.05, T̂„t̂…=T„t̂… /�1
+

Fig. 14 Stress relaxation of a viscoelastic circular cylinder �
ˆ ˆ ˆ +
=0.02, T„t…=T„t… /�1
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when the matrix shear modulus is �+�0�=�1
++�2

+. Furthermore, if
�r , t̂� is continuous

Lim
t→�

T�t̂� = Lim
t→�

�
a

b

2��r, t̂�r2dr =�
a

b

2��Lim
t→�

�r, t̂��r2dr

=�
a

b

2�e�r�r2dr = Te, �41�

where e�r�=Limt→� �r , t̂� is the long-term �equilibrium� relax-
ation shear stress �or equilibrium stress�. Because e�r� is also the
elastic response with shear modulus �+=�1

+ ,Te is actually the
torque for an elastic circular cylinder with matrix shear modulus
�=�1

+ under rate of twist �0. If �r , t̂� is not continuous, the inte-
gration of Eq. �41� can be carried out by integrating �r , t̂� in
intervals of �a ,b� where it is continuous. The relaxation of the
torque is shown in the bottom of Figs. 13–15 for different values
of �. The figures indicate that the amount of relaxation �the dif-
ference between T0 and Te� decreases with decreasing �.

7 Conclusions
This paper has been concerned with the mechanical response of

viscoelastic unidirectional fiber composites whose interfaces can
separate/slip nonlinearly. The focus has been primarily on relax-
ation and creep response although more complex stress and strain
histories can be treated within the framework presented. For a
matrix which is a generalized nth-order Maxwell or Kelvin model,
the development leads to two coupled nth-order differential equa-
tions. The form of these equations falls within the structure of
continuum damage mechanics, i.e., an equation involving the
stress, strain, “damage” variable and their rates, and an equation
describing the evolution of the damage with stress or strain. For
equibiaxial tension �or axial tension�, the damage variable is the
mean interface separation at the fiber-matrix interfaces, while for
antiplane shear the damage variable is the first-mode multiplier in
the expansion for the fiber-matrix interfacial slip, i.e., Eq. �282�.

It has been demonstrated that for both the equibiaxial load and
antiplane shear load of the voided or rigid interface composite, the
mean stress relaxes under relaxation boundary conditions and the
strain creeps under creep boundary conditions. Also, for equibi-

Fig. 15 Stress relaxation of a viscoelastic circular cylinder �

=0.005, T̂„t̂…=T„t̂… /�1
+

axial load of the voided composite, the interface separation creeps
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under both of these two boundary conditions, while for antiplane
shear the interface separation creeps for an applied stress bound-
ary condition but is constant for an applied strain boundary con-
dition. In contrast, the effective response of the nonlinear interface
composite depends strongly on the particular values of interface
force length parameter ��� chosen. At fixed interface strength, � is
proportional to the interface energy. Small � values, correspond-
ing to small interface energy, favor bifurcation. For larger � val-
ues, the stress will normally relax under relaxation boundary con-
ditions while the strain will creep under creep boundary
conditions. The interface separation however, shows relaxation or
creep behavior depending on � and the initial elastic response.
When the interface separation relaxes from the descending branch
of the force-separation curve, the decreasing values of interface
separation necessitate an increase in interface force. Self-repairing
interface behavior of this kind is considered unrealistic. Interface
constitutive relations that eliminate this defect typically have an
unloading branch for �
�max or �̇
0, where �max is the maxi-
mum value of separation attained �15�. The kind of behavior just
described occurs in both the transverse equibiaxial tension case as
well as in the antiplane shear case.

An application of the antiplane shear theory has been utilized to
study stress relaxation in the problem of pure torsion of a solid or
annular circular cylinder. In the elastic problem, singular surfaces
have been shown to exist if � is small enough. If such a surface
forms on initial application of the load, then its time evolution
results in interface self-repair under relaxation, which again un-
derscores the difficulty in using a potential interface-force law.
Another difficulty is utilizing effective property constitutive rela-
tions to study critical phenomena. The classical approximation,
which allows for the use of effective property constitutive rela-
tions �derived for statistically uniform stress and strain fields� in
situations where the fields are nonuniform, breaks down owing to
the high stress gradients associated with singular surfaces. This
issue, in the context of the elastic torsion problem, has been com-
mented on previously �14�.

Four of the five response modes of nonlinear interface vis-
coelastic unidirectional fiber composites have been considered in
this paper, i.e., transverse bulk response, antiplane shear response,
and axial tension response �and associated Poisson contraction�.
The remaining response mode, transverse or in-plane shear is the
most difficult. The composite cylinders microstructure loses most
of its utility here since only bounds on the true response can be
obtained. Other approaches, employing geometric composite
models, may yield useful results. An analysis of transverse shear
of an elastic fiber composite with nonlinear interface, employing
the Mori-Tanaka estimate �16�, has been carried out in �17�.

Appendix

Integral Eqs. �3� can be reduced to a set of two autonomous
nonlinear nth-order differential equations for the stress ��t� and
interface displacement jump ��t� as follows. Consider the inte-
grals on the right-hand side of Eq. �3�. With the aid of Eq. �52�,
this integral and its kth-order time derivative can be written in the
form, for j=1 or 2,

�
0

t

�̇+�t − T�Kj�T�dT = − �
i=1

n

�i�
0

t

�i�t − T�Kj�T�dT ,

�A1�
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dk

dtk�
0

t

�̇+�t − T�Kj�T�dT = �
i=1

n

�i
+�− �iKj

�k−1��t� + �i
2Kj

�k−2��t� + . .

+ �− 1�k��i�kKj�t�� + �
i=1

n

�− 1�k+1��i�k+1

��
0

t

�i�t − T�Kj�T�dT .

Then using Eq. �A1�, the kth derivative of Eq. �3� is

��k��t� = �
i=1

n

�i
+�− �iK1

�k−1��t� + �i
2K1

�k−2��t� + . . + �− 1�k��i�kK1�t��

+ �
i=1

n

�− 1�k+1��i�k+1�
0

t

�i�t − T�K1�T�dT + A1��k��t�

+ A2��k��t� + A3�maxf �k����t�� ,
�A2�

0 = �
i=1

n

�i
+�− �iK2

�k−1��t� + �i
2K2

�k−2��t� + . . + �− 1�k��i�kK2�t��

+ �
i=1

n

�− 1�k+1��i�k+1�
0

t

�i�t − T�K2�T�dT + B1��k��t� + B2��k��t�

+ B3�maxf �k����t�� .

When k=1. .n, we have two systems of n equations of the form
�A2�, i.e., coupled algebraic equations which can be used to solve
for the 2n integrations of the form,

�
0

t

�i�t − T�Kj�T�dT, i = 1 . . n for j = 1,2 �A3�

By Eq. �A2�, integrations of the form �A3�, can be solved for in
terms of higher-order derivatives ��k��t� ,��k��t� ,��k��t� , f �k�
����t�� ,k=1. .n and eliminated in Eq. �3�. The result is a system
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consisting of two nth-order differential equations for ��t� ,��t� of
the form

G1���k��t�,��k��t�,��k��t�, f �k����t��,c,�k,�k� = 0,
�A4�

G2���k��t�,��k��t�,��k��t�, f �k����t��,c,�k,�k� = 0,

where these equations include derivatives of all orders, k=0. .n,
which occur in Eq. �A4� in linear terms. �Note that ��k� is the kth
derivative of � and ��0�=�.�
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Closed-Form Solution
for an Antiplane Interface Crack
between Two Dissimilar
Magnetoelectroelastic Layers
In recent years, ferroelectromagnetic laminated composites have aroused worldwide re-
search interest. In this paper, we developed a closed-form solution for antiplane mechani-
cal and in-plane electric and magnetic fields for a crack between two dissimilar magne-
toelectroelastic layers of finite thickness. Explicit expressions for stresses, electric and
magnetic fields, together with their intensity factors are obtained for the two extreme
cases of an impermeable and a permeable crack. Solutions for some special cases, such
as a homogeneous magnetoelectroelastic layer, two magnetoelectroelastic layers with
opposite poling directions, and a piezoelectric layer bonded to a piezomagnetic layer are
also obtained. Explicit relations between the field intensity factors and the energy release
rates for the interface crack are provided. �DOI: 10.1115/1.2083827�
1 Introduction
The effects of electromagnetomechanical coupling have been

observed in single-phase materials in which simultaneous electric
and magnetic ordering coexists, and in two-phase composites
where the participating phases are ferroelectric and ferromagnetic
�1–3�. Magnetoelectric composites with a surprisingly large mag-
netoelectric effect have been made from ferroelectric phases �e.g.,
BaTiO3� and ferromagnetic phases �e.g., CoFe2O4�. Composites
made of ferroelectric/ferromagnetic materials can exhibit a sig-
nificant magnetoelectric �ME� effect that is not present in single-
phase ferroelectric or ferromagnetic materials �4,5�. Laminated
composites, such as PZT-ferrite and PZT-Terfernol-D layered
structures, have also been shown to be superior to single-phase
ferroelectromagnetic materials in that the ME voltage coefficient
can reach one or two orders of magnitude higher than that of the
single phase.

Magnetoelectroelastic composites can be developed in the form
of secondary-phase piezoelectric �or piezomagnetic� inclusions
embedded in a piezomagnetic �or piezoelectric� matrix, or in the
form of a composite laminate by alternating the ferromagnetic
layers and ferroelectric layers during stacking. An area of increas-
ing interest is the fracture mechanics of ferroelectromagnetic com-
posites, which are combinations of the ferromagnetic and ferro-
electric phases. This is because: �a� existing cracks may alter the
overall effective properties �especially the ME effect� of the ma-
terials considerably, and �b� both ferroelectric phase and ferro-
magnetic phase in ferroelectromagnetic composites are usually
brittle and prone to cracking. Unlike in piezoelectricity, limited
studies have been focused on the fracture characteristics of ferro-
electromagnetic materials. In �6–18�, crack problems were inves-
tigated in order to obtain the crack-tip stress, electric, and mag-
netic field intensity factors.

Ferroelectromagnetic laminated composites have been the sub-
ject of much research interest in recent years. Exceptionally high
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ME effects are found in these composite laminates made of piezo-
electric and magnetostrictive materials �19,20�. However, there
are very few published theoretical results for multilayer magneto-
electric composites �21,22�. Generally, the ME voltage coefficient
measured is one order of magnitude lower than that expected from
theoretical calculations. The mechanical coupling between the pi-
ezoelectric layer and the magnetostrictive layer plays a key role in
generating the ME effect in ferroelectromagnetic laminated com-
posites. Therefore, any factors which weaken the mechanical cou-
pling between the interface will naturally reduce the ME effect.
One critical factor that can cause poor mechanical coupling be-
tween the piezoelectric and magnetostrictive layers is the presence
of cracks at the interface, which will alter the integrity of the
structure, and hence weaken the mechanical coupling effect.

In this paper, a closed-form solution for a through mode-III
crack situated at the interface between two dissimilar magneto-
electroelastic layers is presented. The paper is organized as fol-
lows: Sec. 2 gives basic governing equations for the linear mag-
netoelectroelastic solids, and the solution for the problem of
antiplane mechanical and in-plane electromagnetic fields. This so-
lution is expressed in Fourier transform with some unknown vari-
ables. These unknown variables are determined in closed-form in
Sec. 3 for prescribed stress, electric displacement, and magnetic
induction boundary conditions on the medium surfaces, and in
Sec. 4 for prescribed displacement, electric potential, and mag-
netic potential boundary conditions on the medium surfaces. In
each of Secs. 3 and 4, solutions for electrically impermeable and
magnetically impermeable crack �Subsections 3.1 and 4.1�, elec-
trically permeable and magnetically impermeable crack �Subsec-
tions 3.2 and 4.2�, electrically impermeable and magnetically per-
meable crack �Subsections 3.3 and 4.3�, electrically permeable
and magnetically permeable crack �Subsections 3.4 and 4.4�, are
given. A crack in two magnetoelectroelastic layers with identical
properties are given in Subsections 3.5 and 4.5, where the poling
direction of the layers are either identical or opposite. Closed-
form solution for a crack between a piezoelectric layer and a
piezomagnetic layer are given in Subsections 3.6 and 4.6. Also
provided are solutions for cases of infinite layer thickness of the
layered medium, and semi-infinite crack �Subsections 3.7 and

4.7�. Conclusions are finally given in Sec. 5.
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2 Description of the Problem
Consider a magnetoelectroelastic layered medium occupying

−h�y�h, −��x��, −��z��, with a through Griffith mode-
III crack of length 2a located in the midplane, y=0, −a�x�a,
−��z��, as shown in Fig. 1. Here, Cartesian coordinates x ,y ,z
are the principal axes of the material symmetry while the z axis is
oriented in the poling direction of the magnetoelectroelastic lay-
ers. From the viewpoint of applications, antiplane crack problems
often provide a useful analogue to the more interesting in-plane
fracture problems. The antiplane governing equations for the mag-
netoelectroelastic medium whose poling direction is perpendicular
to the x-y plane are �12�:

• Constitutive equations:

�xz = c44
�w

�x
+ e15

��

�x
+ h15

��

�x
, �yz = c44

�w

�y
+ e15

��

�y

+ h15
��

�y
, �1a�

Dx = e15
�w

�x
− �11

��

�x
− �11

��

�x
, Dy = e15

�w

�y
− �11

��

�y

− �11
��

�y
, �1b�

Bx = h15
�w

�x
− �11

��

�x
− �11

��

�x
, By = h15

�w

�y
− �11

��

�y

− �11
��

�y
, �1c�

and
• Equilibrium equations �in the absence of body forces, con-

centrated electric charges, and concentrated magnetic
source�:

c44�
2w + e15�

2� + h15�
2� = 0, �2a�

e15�
2w − �11�

2� − �11�
2� = 0, �2b�

h15�
2w − �11�

2� − �11�
2� = 0. �2c�

In Eqs. �1� and �2�, w is antiplane mechanical deformation, � and
� are electric potential and magnetic potential, respectively, �ij,
Di, and Bi are components of stress, electrical displacement, and
magnetic induction, c44, e15, h15, and �11 are elastic, piezoelectric,
piezomagnetic, and electromagnetic constants, and �11 and �11
are dielectric permeability and magnetic permeability, respec-
tively.

Here, for convenience, we consider the following antiplane me-
chanical and in-plane electromagnetic loads applied on the sur-
faces of the layered medium:

�yz�x, ± h� = 	0, Dy�x, ± h� = D0, By�x, ± h� = B0, �3a�

Fig. 1 An interface crack in a magnetoelectroelastic layered
medium
or
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w�x, ± h� = w±, ��x, ± h� = �±, ��x, ± h� = �±, �3b�
in which the subscripts 0, 
, and � represent the prescribed val-
ues. �	0 ,D0 ,B0�, �w+ ,�+ ,�+�, and �w− ,�− ,�−� are known con-
stants. Boundary conditions �3a� indicate that the top and bottom
surfaces of the medium, y= ±h, are uniformly loaded by an anti-
plane mechanical stress, an in-plane electric displacement, and an
in-plane magnetic induction. Equations �3b� indicate that the top
and bottom surfaces of the layer, y= ±h, are clamped and dis-
placed along the z direction by an amount w++w−, and there is a
constant electric potential difference �++�− and a constant mag-
netic potential difference �++�− between the top and bottom sur-
faces.

Hereafter, the subscript j will be used to denote the layer num-
ber �j=1,2�. Due to continuity conditions, there are additional
elastic, electric, and magnetic constraints along the interface:

w�1��x,0� = w�2��x,0�, ��1��x,0� = ��2��x,0�, ��1��x,0�

= ��2��x,0�, �x� � a . �4�

In solving the crack problem, the crack surfaces are usually stress
free. However, since the medium inside the crack �usually air or
vacuum� allows some penetrations of the electric and magnetic
fields, these fields may not be zero. Suppose the normal compo-
nents of the electric displacement and the magnetic induction in-
side the crack are d0 and b0, respectively, then along the interface,
we have:

�yz�1��x,0� = �yz�2��x,0� = 0, Dy�1��x,0� = Dy�2��x,0�

= d0, By�1��x,0� = By�2��x,0� = b0, �x� � a . �5a�

�yz�1��x,0� = �yz�2��x,0�, Dy�1��x,0� = Dy�2��x,0�, By�1��x,0�

= By�2��x,0�, �x� � 0. �5b�

The quantities d0 and b0 are unknown and will be determined
later.

3 Closed-Form Solution for Prescribed Stress, Electric
Displacement, and Magnetic Induction Loads

In this section, the prescribed boundary conditions �3a� are con-
sidered. Due to symmetry, it suffices to analyze the right-half
portion of the medium, i.e., x0. The magnetoelectroelastic field
in the x�0 portion can be directly given by symmetry consider-
ation. Using the Fourier transform, an appropriate solution of Eq.
�2�, in connection with Eq. �1�, can be expressed by the following
integrals:

�w�1��x,y�

��1��x,y�

��1��x,y�
� =�

0

�
cosh�sh − sy�

cosh�sh�
cos�sx��A�1��s�

B�1��s�

C�1��s�
�ds

+ �w0�1�

�0�1�

�0�1�
� y

h
, 0 � y � h , �6a�

�w�2��x,y�

��2��x,y�

��2��x,y�
� =�

0

�
cosh�sh + sy�

cosh�sh�
cos�sx��A�2��s�

B�2��s�

C�2��s�
�ds

+ �w0�2�

�0�2�

�0�2�
� y

h
, − h � y � 0, �6b�

where x�0, �j=1,2� denotes the layer number, A�j��s�, B�j��s�,
and C�j��s� are unknown functions to be determined from the pre-

scribed conditions �4� and �5� along the cracked interface. The
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quantities w0�j�, �0�j�, and �0�j� are determined from the surface
conditions �3a� as:

�w0�j�

�0�j�

�0�j�
� = h	c44�j� e15�j� h15�j�

e15�j� − �11�j� − �11�j�

h15�j� − �11�j� − �11�j�



−1

� 	0

D0

B0
�, j = 1,2. �7�

From the constitutive equations �1�, the stresses, electric dis-
placements, and magnetic inductions can be expressed in terms of
A�j��s�, B�j��s�, and C�j��s�. For example, we have

��yz�1��x,y�

Dy�1��x,y�

By�1��x,y�
� = − 	c44�1� e15�1� h15�1�

e15�1� − �11�1� − �11�1�

h15�1� − �11�1� − �11�1�



��
0

�

s
sinh�sh − sy�

cosh�sh�
cos�sx��A�1��s�

B�1��s�

C�1��s�
�ds + � 	0

D0

B0
� ,

�8a�

��yz�2��x,y�

Dy�2��x,y�

By�2��x,y�
� = 	c44�2� e15�2� h15�2�

e15�2� − �11�2� − �11�2�

h15�2� − �11�2� − �11�2�



��
0

�

s
sinh�sh + sy�

cosh�sh�
cos�sx��A�2��s�

B�2��s�

C�2��s�
�ds + � 	0

D0

B0
� .

�8b�

Now, the unknowns A�j��s�, B�j��s�, and C�j��s� can be deter-
mined from the mixed mode boundary conditions on the cracked
plane. From Eqs. �8� and �5b�, we know that

	c44�1� e15�1� h15�1�

e15�1� − �11�1� − �11�1�

h15�1� − �11�1� − �11�1�

�A�1��s�

B�1��s�

C�1��s�
�

= − 	c44�2� e15�2� h15�2�

e15�2� − �11�2� − �11�2�

h15�2� − �11�2� − �11�2�

�A�2��s�

B�2��s�

C�2��s�
� . �9�

From Eqs. �4� and �6�, and by substitution of Eq. �9�, it can be
shown that:

�
0

�

cos�sx��A�s�
B�s�
C�s�

�ds = 0, x � a , �10�

where

�A�s�
B�s�
C�s�

� = �E��A�1��s�

B�1��s�

C�1��s�
� , �11�

and where

�E� = 	1 0 0

0 1 0

0 0 1



+ 	c44�2� e15�2� h15�2�

e15�2� − �11�2� − �11�2�

h15�2� − �11�2� − �11�2�



−1

	c44�1� e15�1� h15�1�

e15�1� − �11�1� − �11�1�

h15�1� − �11�1� − �11�1�

 .
�12�
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From Eqs. �8a� and �5�, and by substitutions of Eqs. �11� and
�12�, we obtain

�
0

�

s tanh�sh�cos�sx��A�s�
B�s�
C�s�

�ds = � �̄0

Ē0

H̄0

�, 0 � x � a , �13�

where

� �̄0

Ē0

H̄0

� = 2�Ē�� 	0

D0 − d0

B0 − b0
� , �14�

in which Ē is a bimaterial constant matrix:

�Ē� =
1

2�	c44�1� e15�1� h15�1�

e15�1� − �11�1� − �11�1�

h15�1� − �11�1� − �11�1�



−1

+ 	c44�2� e15�2� h15�2�

e15�2� − �11�2� − �11�2�

h15�2� − �11�2� − �11�2�



−1

� . �15�

Thus, Ē is the average of the inverse of two material matrices. For
different material combinations �such as two layers poled oppo-
sitely, a ferroelectric layer, and a ferromagnetic layer bonded to-

gether�, Ē has different forms. Detailed discussions are made in
Subsections 3.5 and 3.6.

Following the method outlined by Li �23�, the functions A�s�,
B�s�, and C�s� can be solved from Eqs. �10� and �13� as follows:

�A�s�
B�s�
C�s�

� = 2�s−1�
0

a

����sin�s��d�� �̄0

Ē0

H̄0

� , �16�

with

���� =
sinh�2b��

�2 cosh�ba�sinh2�ba� − sinh2�b��
�K�tanh�ba�� − M���� ,

�17a�

b =
�

2h
, M��� = ���

2
,

sinh2�ba�
sinh2�ba� − sinh2�b��

, tanh�ba�� ,

�17b�

where K represents the complete elliptic integral of the first kind,
and � is the elliptic integral of the third kind.

Since Eq. �16� contains unknown quantities d0 and b0, which
are the normal components of the electric displacement vector and
the magnetic induction vector inside the crack �see Eq. �5��, addi-
tional assumptions are needed to obtain A�s�, B�s�, and C�s�. This
will be discussed in the following Subsections 3.1–3.4. Once the
functions A�s�, B�s�, and C�s� are known, the full field solution
can be obtained. In particular, the antiplane shear stress, in-plane
electric displacement and magnetic induction on the cracked plane
are given by:

��yz�x,0�
Dy�x,0�
By�x,0�

� = � 	0

D0 − d0

B0 − b0
� sinh�2bx��K�tanh�ba�� − M�x��

� cosh�ba�sinh2�bx� − sinh2�ba�
,

x  a . �18�

Define w�x�=w�1��x ,0�−w�2��x ,0�, ��x�=��1��x ,0�−��2��x ,0�
and ��x�=��1��x ,0�−��2��x ,0�, which are, respectively, the dis-

placement difference, the electric potential difference, and the
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magnetic potential difference across the crack. It can be shown
that:

�w�x�
��x�
��x�

� =
1

� cosh�ba�� �̄0

Ē0

H̄0

�
��

x

a
sinh�2b���K�tanh�ba�� − M����

sinh2�ba� − sinh2�b��
d� ,

0 � x � a , �19�

Equation �18� indicates that the antiplane shear stress, in-plane
electric displacement, and magnetic induction exhibit the usual
square-root singularity near the crack tip. For many purposes, it is
desirable to determine the intensity factors of magnetoelectroelas-
tic field. From the definitions of the mode III stress intensity factor
KIII, the electric displacement intensity factor KD, and the mag-
netic induction intensity factor KB:

�KIII

KD

KB
� = lim

x→+a��yz�x,0�
Dy�x,0�
By�x,0�

�2��x − a� , �20�

we can obtain the closed-form expression for the field intensity
factors:

�KIII

KD

KB
� = � 	0

D0 − d0

B0 − b0
�4

tanh�ba�
�b

K�tanh�ba��, b =
�

2h
.

�21�

The angular distributions of the stresses, electric displacements,
and magnetic inductions are related to the field intensity factors
through �12�:

�xz = −
KIII

2�r
sin

�

2
, �yz =

KIII

2�r
cos

�

2
, �22a�

Dx = −
KD

2�r
sin

�

2
, Dy =

KD

2�r
cos

�

2
, �22b�

Bx = −
KB

2�r
sin

�

2
, By =

KB

2�r
cos

�

2
, �22c�

in which r and � are shown in Fig. 1. The energy release rate can
be obtained from the virtual crack closure integral �12�:

G = lim
�→0

1

2�
�

0

�

��yz�r + a,0�w�r + a − �� + Dy�r + a,0���r + a − ��

+ By�r + a,0���r + a − ���dr . �23�

From Eqs. �19� and �20�, an expression relating G to �KIII ,KD ,KB�
can be obtained:

G =
1

2
�KIII,KD,KB��Ē��KIII

KD

KB
� . �24�

The 3�3 matrix �Ē� has been defined in Eq. �15�. Note that
although Eqs. �22� and �24� are derived from the two-layer me-
dium, it is valid for any interface crack problem in any layered
magnetoelectroelastic media, subjected to any magnetoelectrome-
chanical loads.

Now, the crack tip field intensity factors, the angular distribu-
tions of the stresses, electric displacements, and magnetic induc-
tions, as well as the energy release rate, have been obtained ana-

lytically in terms of the applied �	0 ,D0 ,B0� on the surfaces y
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= ±h and �d0 ,b0� on the crack faces. Since �d0 ,b0� remains un-
known, additional assumptions are needed to obtain the full solu-
tion. It is well known that in piezoelectric fracture, the electrically
impermeable and permeable crack assumptions are usually
adopted. Analogously, the crack can be assumed to be magneti-
cally impermeable or permeable in magnetoelectroelastic fracture.
In the following Subsections 3.1–3.4, the electrically impermeable
and magnetically impermeable crack, the electrically permeable
and magnetically impermeable crack, the electrically impermeable
and magnetically permeable crack, the electrically permeable and
magnetically permeable crack assumptions will be studied sepa-

rately. In the remaining part of this paper, the symbols Ēij will be

used to denote the elements of the matrix �Ē�.

3.1 The Electrically Impermeable and Magnetically Im-
permeable Crack Assumption (Fully Impermeable Crack). For
this assumption, the crack is absolutely insulated to the electric
and magnetic fields. Thus, the normal components of the electric
displacement vector and the magnetic induction vector vanish ev-
erywhere inside the crack. This is, d0=0 and b0=0. Then the field
intensity factors can be obtained directly from Eq. �21� as follows:

�KIII

KD

KB
� = � 	0

D0

B0
�4 tanh�ba�

�b
K�tanh�ba�� . �25�

Solutions near the crack tip and the energy release rate are ob-
tained from Eqs. �22� and �24� by substituting Eq. �25�. It is clear
that for electrically and magnetically impermeable crack, the ma-
terial properties do not enter into the field intensity factors.

3.2 The Electrically Permeable and Magnetically Imper-
meable Crack Assumption. Here, the upper and lower surfaces
of the crack are electrically conducting but magnetically insulated.
Hence, the electric potential jump across the crack and the normal
component of the magnetic induction vector inside the crack van-
ish. This is, ��x�=0 and b0=0. Therefore, the electric displace-
ment inside the crack d0 can be obtained from Eqs. �14� and �19�
so that:

d0 = D0 +
Ē12

Ē22

	0 +
Ē23

Ē22

B0. �26�

Substituting Eq. �26� into Eqs. �14� and �21� yields the field in-
tensity factors:

�KIII

KB
� = � 	0

B0
�4 tanh�ba�

�b
K�tanh�ba�� , �27�

KD = �−
Ē12

Ē22

KIII −
Ē23

Ē22

KB� . �28�

Solutions near the crack tip and the energy release rate are ob-
tained from Eqs. �22� and �24� by substituting Eqs. �27� and �28�.
From Eq. �28� we know that the electric displacement intensity
factor and the energy release rate for the electrically permeable
and magnetically impermeable crack can be expressed in terms of
the applied stress and magnetic induction intensity factors.

3.3 The Electrically Impermeable and Magnetically Per-
meable Crack Assumption. For this assumption, the upper and
lower surfaces of the crack are magnetically in contact but elec-
trically insulated. Hence, the magnetic potential jump across the
crack and the normal component of the electric displacement vec-
tor inside the crack vanish. This is, ��x�=0 and d0=0. The mag-
netic induction inside the crack b0 can be obtained from Eqs. �14�

and �19�. This gives:
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b0 = B0 +
Ē13

Ē33

	0 +
Ē23

Ē33

D0. �29�

Substituting Eq. �29� into Eqs. �14� and �21� yields the field in-
tensity factors:

�KIII

KD
� = � 	0

D0
�4 tanh�ba�

�b
K�tanh�ba�� , �30�

KB = �−
Ē13

Ē33

KIII −
Ē23

Ē33

KD� . �31�

Solutions near the crack tip and energy release rate are obtained
from Eqs. �22� and �24� by substituting Eqs. �30� and �31�. It can
be shown from Eq. �31� that the magnetic induction intensity fac-
tor and the energy release rate for the electrically impermeable
and magnetically permeable crack can be expressed in terms of
the applied stress and electric displacement intensity factors.

3.4 The Electrically Permeable and Magnetically Perme-
able Crack Assumption (Fully Permeable Crack). In this case,
the upper and lower surfaces of the crack are electrically and
magnetically in contact. Hence, the electric potential jump and the
magnetic potential jump across the crack vanish. This is, ��x�
=0 and ��x�=0. Hence, the electric displacement and magnetic
induction inside the crack d0 and b0 can be obtained from Eqs.
�14� and �19�. As a result, we have:

� �̄0

Ē0

H̄0

� = ��̄0

0

0
� = �Ē�� 	0

D0 − d0

B0 − b0
� . �32�

From the above equation, we know that

d0 = D0 −
Ē13Ē23 − Ē33Ē12

Ē22Ē33 − Ē23
2

	0, b0 = B0 −
Ē12Ē23 − Ē22Ē13

Ē22Ē33 − Ē23
2

	0,

�33�
It then follows from Eq. �21� that

KIII = 	04 tanh�ba�
�b

K�tanh�ba�� , �34�

KD =
Ē13Ē23 − Ē33Ē12

Ē22Ē33 − Ē23
2

KIII, KB =
Ē12Ē23 − Ē22Ē13

Ē22Ē33 − Ē23
2

KIII. �35�

Solutions near the crack tip and the energy release rate are ob-
tained from Eqs. �22� and �24� by substituting Eqs. �34� and �35�.
It is clear that for electrically permeable and magnetically perme-
able crack assumption, the crack-tip field intensity factors and the
energy release rate are solely determined by the applied stress
intensity factor. An explanation to this fact is that when the crack
is electrically and magnetically permeable, it does not obstruct
any electric displacement and magnetic induction. Thus, the
crack-tip fields will not be affected by the applied electric dis-
placement and magnetic induction loads. Because of the coupling
between the electromagnetic fields and mechanical field, there ex-
ist electric displacement and magnetic induction intensity factors
at the crack tip, which respond only to the applied stress intensity
factor.

3.5 Bimaterial Constants. From the solution given above, it
is clear that the crack-tip behavior in a magnetoelectroelastic bi-

material is governed by the bimaterial constant matrix �Ē�, which
is given in Eq. �15�. If the lower layer and the upper layer have the
same properties and are poled in the same direction �i.e., the crack
lies in a homogeneous magnetoelectroelastic medium�, then the

bimaterial constant matrix is:

Journal of Applied Mechanics
�Ē� = 	c44 e15 h15

e15 − �11 − �11

h15 − �11 − �11



−1

. �36�

where because of homogeneity, the subscripts j=1 and j=2 have
been omitted. The field intensity factors for this problem can be
readily obtained from Subsections 3.1–3.4 by substitution of Eq.
�36�. The energy release rate and angular distribution of the mag-
netoelectroelastic fields are given by Eqs. �24� and �22�.

Meanwhile, if the lower layer and the upper layer have the
same properties but are poled in opposite directions �e.g., the
lower layer is poled in the −z direction, and the upper layer is
poled in the +z direction�, then c44�1�=c44�2�=c44, �11�1�=�11�2�
=�11, �11�1�=�11�2�=�11, e15�1�=−e15�2�=e15, h15�1�=−h15�2�=h15,
�11�1�=�11�2�=�11. The bimaterial constant matrix can be obtained
from Eq. �15� and it can be shown that

Ē12 = Ē13 = Ē21 = Ē31 = 0. �37�

Therefore, the crack-tip field intensity factors can be obtained
from related expressions in Subsections 3.1–3.4 with the known
bimaterial constant matrix obtained from Eq. �15�. In particular,
for a fully permeable crack between two identical magnetoelec-
troelastic layers polarized in opposite directions, we have �from
Eq. �35��:

KD = KB = 0. �38�

Once the crack-tip magnetoelectroelastic field intensity factors
have been obtained, the energy release rate and the angular distri-
bution of the magnetoelectroelastic fields are given by Eqs. �24�
and �22�.

3.6 A Crack between a Piezoelectric Layer and a Piezo-
magnetic Layer. Magnetoelectroelastic materials usually com-
prise alternating piezoelectric layers and piezomagnetic layers. In
this section, we consider a special case. This is, the lower medium
is a piezoelectric layer and the upper layer is a piezomagnetic
layer as shown in Fig. 2. The material properties for the piezo-
electric layer �No. 2� and the piezomagnetic layer �No. 1� have the
following form:

	c44�2� e15�2� h15�2�

e15�2� − �11�2� − �11�2�

h15�2� − �11�2� − �11�2�

 = 	c44�2� e15�2� 0

e15�2� − �11�2� 0

0 0 − �

 ,

�39a�

	c44�1� e15�1� h15�1�

e15�1� − �11�1� − �11�1�

h15�1� − �11�1� − �11�1�

 = 	c44�1� 0 h15�1�

0 − � 0

h15�1� 0 − �11�1�

 .

�39b�

As a result, the bimaterial constant matrix �Ē� defined in Eq. �15�

Fig. 2 A center crack between a piezoelectric layer and a pi-
ezomagnetic layer
has the form:
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�Ē� =
1

2

	�11�2� e15�2� 0

e15�2� − c44�2� 0

0 0 0



c44�2��11�2� + e15�2�
2 +

1

2

	�11�1� 0 h15�1�

0 0 0

h15�1� 0 − c44�1�



c44�1��11�1� + h15�1�
2 . �40�

The stress intensity factor for this problem remains the same as
that given in Eq. �21�:

KIII = 	04
tanh�ba�

�b
K�tanh�ba�� , �41�

which are valid for both the piezoelectric layer and the piezomag-
netic layer, either for the permeable crack assumption or the im-
permeable crack assumption.

The crack-tip electric displacement intensity factor KD and the
electric displacement inside the crack d0 exist only in the piezo-
electric layer �layer No. 2�. They have the following form:

• For electrically impermeable crack,

d0 = 0, KD = D04
tanh�ba�

�b
K�tanh�ba�� . �42�

• For electrically permeable crack,

d0 = D0 −
e15�2�

c44�2�
	0, KD =

e15�2�

c44�2�
KIII. �43�

The crack-tip magnetic induction intensity factor KB and
the magnetic induction inside the crack b0 exist only in the
piezomagnetic layer �layer No. 1�. They have the following
forms:

• For magnetically impermeable crack,

b0 = 0, KB = B04
tanh�ba�

�b
K�tanh�ba�� . �44�

• For magnetically permeable crack,

b0 = B0 −
h15�1�

c44�1�
	0, KB =

h15�1�

c44�1�
KIII. �45�

Once the crack-tip field intensity factors are obtained, the
angular distributions of stresses, the electric displacements,
and magnetic inductions can be obtained from Eqs. �22�,
and the energy release rate G can be determined from Eq.

�24�, in which the matrix �Ē� is defined in Eq. �40�. It is
clear that the values of G are different for the piezoelectric
layer and the piezomagnetic layer. G also depends on the
crack-face electric and magnetic boundary condition
assumptions.

3.7 Solutions for an Infinitesimal Crack and a Semi-
Infinite Crack. In Subsections 3.1–3.6, the thickness of the mag-
netoelectroelastic layers h is finite. From the solutions given in
these subsections, it is possible to obtain the solutions for an in-
finitesimal crack �i.e., for a�h�. Since

lim
h→�

4 tanh�ba�
�b

K�tanh�ba�� = �a , �46�

solutions for the infinitesimal crack are derived by replacing the
quantity 4 tanh�ba� /�bK�tanh�ba�� in Subsections 3.1–3.6 with
�a.

Closed-form expressions are also available for a semi-infinite
crack in magnetoelectroelastic layers. In this case, the crack
length a is considerably larger than the magnetoelectroelastic lay-

ers �i.e., for a�h�. Since
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lim
a→�

4 tanh�ba�
�b

K�tanh�ba�� = 2h , �47�

solutions for the semi-infinite crack are obtained by replacing the
quantity 4 tanh�ba� /�bK�tanh�ba�� in Subsections 3.1–3.6 with
2h.

After obtaining the crack-tip field intensity factors, the angular
distributions of the magnetoelectroelastic fields can be obtained
from Eqs. �22�, and the energy release rate G can be determined
from Eq. �24�.

4 Closed-Form Solution for Prescribed Displacement,
Electric Potential, and Magnetic Potential on the
Medium Surfaces

Here, the prescribed boundary conditions �3b� are considered.
Since the normal components of stress, electric displacement, and
magnetic induction must be continuous, the quantities
�w+ ,�+ ,�+� and �w− ,�− ,�−� cannot be independent and they
must satisfy the following additional constraints:

	c44�1� e15�1� h15�1�

e15�1� − �11�1� − �11�1�

h15�1� − �11�1� − �11�1�

�w+

�+

�+ � = − 	c44�2� e15�2� h15�2�

e15�2� − �11�2� − �11�2�

h15�2� − �11�2� − �11�2�



� �w−

�−

�− � . �48�

Once again, the right-half portion of the medium �i.e. x0� is
investigated because of symmetry. In the present case, an appro-
priate solution of Eq. �2�, in connection with Eq. �1�, can be ex-
pressed as the following integrals:

�w�1��x,y�

��1��x,y�

��1��x,y�
� =�

0

�
sinh�sh − sy�

sinh�sh�
cos�sx��A�1��s�

B�1��s�

C�1��s�
�ds

+ �w+

�+

�+ � y

h
, 0 � y � h , �49a�

�w�2��x,y�

��2��x,y�

��2��x,y�
� =�

0

�
sinh�sh + sy�

sinh�sh�
cos�sx��A�2��s�

B�2��s�

C�2��s�
�ds

− �w−

�−

�− � y

h
, − h � y � 0, �49b�

where x�0, �j=1,2� denotes the layer number, A�j��s�, B�j��s�,
and C�j��s� are unknown functions to be determined from the pre-
scribed conditions �4� and �5� on the cracked interface. The
stresses, electric displacements, and magnetic inductions associ-
ated with Eqs. �49� are obtained from the constitutive equations

�1�. Hence,
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��yz�1��x,y�

Dy�1��x,y�

By�1��x,y�
� = − 	c44�1� e15�1� h15�1�

e15�1� − �11�1� − �11�1�

h15�1� − �11�1� − �11�1�



��
0

�

s
cosh�sh − sy�

sinh�sh�
cos�sx��A�1��s�

B�1��s�

C�1��s�
�ds

+ � 	0

D0

B0
� , �50a�

��yz�2��x,y�

Dy�2��x,y�

By�2��x,y�
� = 	c44�2� e15�2� h15�2�

e15�2� − �11�2� − �11�2�

h15�2� − �11�2� − �11�2�



���0

�

s
cosh�sh + sy�

sinh�sh�
cos�sx��A�2��s�

B�2��s�

C�2��s�
�ds�

+ � 	0

D0

B0
� , �50b�

where

� 	0

D0

B0
� =

1

h	c44�1� e15�1� h15�1�

e15�1� − �11�1� − �11�1�

h15�1� − �11�1� − �11�1�

�w+

�+

�+ �
= −

1

h	c44�2� e15�2� h15�2�

e15�2� − �11�2� − �11�2�

h15�2� − �11�2� − �11�2�

�w−

�−

�− � . �51�

The unknowns A�j��s�, B�j��s�, and C�j��s� will be determined from
the mixed-mode boundary conditions on the crack interface. From
Eqs. �50� and �5b� it can be shown that A�j��s�, B�j��s�, and
C�j��s� also satisfy Eq. �9� for the present problem. From Eqs. �4�
and �49�, and by substitution of Eq. �9�, we have

�
0

�

cos�sx��A�s�
B�s�
C�s�

�ds = 0, x � a , �52�

where �A�s� ,B�s� ,C�s�� are related to �A1�s� ,B1�s� ,C1�s��
through Eq. �11�, in which the matrix �E� is given in Eq. �12�.
From Eqs. �50a� and �5�, and by substitution of Eqs. �11� and �12�,
we obtain

�
0

�

s coth�sh�cos�sx��A�s�
B�s�
C�s�

�ds = � �̄0

Ē0

H̄0

�, 0 � x � a , �53�

where ��̄0 , Ē0 , H̄0� is related to �w+ ,�+ ,�+� and �w− ,�− ,�−�
through Eqs. �14� and �15� and the bimaterial constant matrix Ē is
defined in Eq. �15�.

Define w�x�=w�1��x ,0�−w�2��x ,0�, ��x�=��x ,0�−��2��x ,0�,
and ��x�=��1��x ,0�−��2��x ,0�, which are, respectively, the dis-
placement difference, the electric potential difference, and the
magnetic potential difference across the crack. It can be shown

from Eqs. �52� and �53� that
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�w�x�
��x�
��x�

� =
1

b
cos−1� cosh�bx�

cosh�ba��� �̄0

Ē0

H̄0

�, 0 � x � a , �54�

where b=� /2 h. Since Eq. �54� contains unknown quantities d0
and b0, which are the normal components of the electric displace-
ment vector and the magnetic induction vector inside the crack
�see Eqs. �5� and �14��, additional assumptions are needed to ob-
tain A�s�, B�s�, and C�s�. This will be discussed in Subsections
4.1–4.4 If the functions A�s�, B�s�, and C�s� are known, the full
field solution can be obtained. In particular, the antiplane shear
stress, in-plane electric displacement, and magnetic induction on
the cracked plane are as follows:

��yz�x,0�
Dy�x,0�
By�x,0�

� = � 	0

D0 − d0

B0 − b0
� sinh�bx�
sinh2�bx� − sinh2�ba�

, x  a .

�55�

In Eq. �55�, the parameters �	0 ,D0 ,B0� are determined from Eq.
�51�. Equation �55� indicates that the antiplane shear stress, in-
plane electric displacement, and magnetic induction exhibit the
usual square-root singularity near the crack tip. From the defini-
tions of Eq. �20�, the closed-form expression for the field intensity
factors can be obtained as:

�KIII

KD

KB
� = � 	0

D0 − d0

B0 − b0
�2h tanh��a

2h
� . �56�

The angular distributions of the stresses, electric displacements,
and magnetic inductions are related to the field intensity factors
through Eq. �22� and the energy release rates are given in Eq. �24�.

The closed-form crack-tip field solutions have now been ob-
tained for the prescribed displacement, electric potential, and
magnetic potential loads. Since the quantities �d0 ,b0� inside the
crack remain unknown, additional assumptions are needed to ob-
tain the full solutions. In Subsections 4.1–4.4, the electrically im-
permeable and magnetically impermeable crack, the electrically
permeable and magnetically impermeable crack, the electrically
impermeable and magnetically permeable crack, the electrically
permeable and magnetically permeable crack assumptions will be
separately studied. In all cases, the loading parameters �	0 ,D0 ,B0�
are related to the applied mechanical displacement, electric poten-
tial, and magnetic potential through Eq. �51�.

4.1 The Electrically Impermeable and Magnetically Im-
permeable Crack Assumption (Fully Impermeable Crack). For
such assumption, the crack is absolutely insulated to electric and
magnetic fields. Hence, the normal components of the electric
displacement vector and the magnetic induction vector vanish ev-
erywhere inside the crack. This is, d0=0 and b0=0. Then, the field
intensity factors can be obtained directly from Eq. �56� as follows:

�KIII

KD

KB
� = � 	0

D0

B0
�2h tanh��a

2h
� . �57�

Solutions near the crack tip and the energy release rate are ob-
tained from Eqs. �22� and �24� with the substitution of Eq. �57�. It
is clear that for electrically and magnetically impermeable crack,
the material properties do not enter into the field intensity factors.

4.2 The Electrically Permeable and Magnetically Imper-
meable Crack Assumption. Under this assumption, the upper
and lower surfaces of the crack are electrically conducting but
magnetically insulated. Hence, the electric potential jump across

the crack and the normal component of the magnetic induction
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vector inside the crack vanish. This is, ��x�=0 and b0=0. There-
fore, the electric displacement inside the crack d0 can be obtained
from Eqs. �14� and �54� so that

d0 = D0 +
Ē12

Ē22

	0 +
Ē23

Ē22

B0. �58�

Substituting Eq. �58� into Eqs. �14� and �56� yields the field in-
tensity factors:

�KIII

KB
� = � 	0

B0
�2h tanh��a

2h
�, KD = �−

Ē12

Ē22

KIII −
Ē23

Ē22

KB� .

�59�
Solutions near the crack tip and energy release rate are obtained
from Eqs. �22� and �24� by substituting Eqs. �58� and �59�. From
Eq. �59�, we know that the electric displacement intensity factor
and the energy release rate for the electrically permeable and mag-
netically impermeable crack can be expressed in terms of the ap-
plied stress and magnetic induction intensity factors.

4.3 The Electrically Impermeable and Magnetically Per-
meable Crack Assumption. Here, the upper and lower surfaces
of the crack are magnetically in contact but electrically insulated.
Thus, the magnetic potential jump across the crack and the normal
component of the electric displacement vector inside the crack
vanish. This is, ��x�=0 and d0=0. Hence, the magnetic induction
inside the crack b0 can be obtained from Eqs. �14� and �54�. We
have

b0 = B0 +
Ē13

Ē33

	0 +
Ē23

Ē33

D0. �60�

Substituting Eq. �29� into Eqs. �14� and �56� yields the field in-
tensity factors:

�KIII

KD
� = � 	0

D0
�2h tanh��a

2h
�, KB = �−

Ē13

Ē33

KIII −
Ē23

Ē33

KD� .

�61�
Solutions near the crack tip and the energy release rate are

obtained from Eqs. �22� and �24� by substituting Eq. �61�. It can
be shown that the magnetic induction intensity factor and the en-
ergy release rate for the electrically impermeable and magneti-
cally permeable crack can be expressed in terms of the applied
stress and electric displacement intensity factors.

4.4 The Electrically Permeable and Magnetically Perme-
able Crack Assumption (Fully Permeable Crack). For this as-
sumption, the upper and lower surfaces of the crack are electri-
cally and magnetically in contact. Hence, the electric potential and
the magnetic potential jumps across the crack vanish. This is,
��x�=0 and ��x�=0. Therefore, the electric displacement and the
magnetic induction inside the crack d0 and b0 can be obtained
from Eqs. �14� and �54�. Thus, we have

� �̄0

Ē0

H̄0

� = ��̄0

0

0
� = �Ē�� 	0

D0 − d0

B0 − b0
� . �62�

From the above equation, we know that

d0 = D0 −
Ē13Ē23 − Ē33Ē12

Ē22Ē33 − Ē23
2

	0, b0 = B0 −
Ē12Ē23 − Ē22Ē13

Ē22Ē33 − Ē23
2

	0,

�63�
It then follows from Eq. �56� that

�a

KIII = 	02h tanh�

2h
� , �64a�
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KD =
Ē13Ē23 − Ē33Ē12

Ē22Ē33 − Ē23
2

KIII, KB =
Ē12Ē23 − Ē22Ē13

Ē22Ē33 − Ē23
2

KIII.

�64b�

Solutions near the crack tip and the energy release rate are ob-
tained from Eqs. �22� and �24� by substituting of Eqs. �64�. It is
clear that for the electrically permeable and magnetically perme-
able crack assumption, the crack-tip field intensity factors and the
energy release rate are solely determined by the applied stress
intensity factor.

4.5 Two Magnetoelectroelastic Layers of the Same Prop-
erties Bonded Together. Similar to the case of stress, electric
displacement, and magnetic induction loads applied on the me-
dium surfaces, the solution for the case of mechanical displace-
ment, electric potential and magnetic potential can be readily ob-
tained if the upper layer and the bottom layer have the same
properties:

• If the lower layer and the upper layer have the same prop-
erties and are poled in the same direction �i.e., the crack is
located in a homogeneous magnetoelectroelastic medium�,
then the solution can be obtained from Subsections 4.1–4.4

by substitution of the bimaterial constant matrix �Ē� given
by Eq. �36�.

• If the lower layer and the upper layer have the same prop-
erties but are poled in opposite directions �e.g., the lower
layer is poled in the −z direction, and the upper layer is
poled in the +z direction�, then c44�1�=c44�2�=c44, �11�1�
=�11�2�=�11, �11�1�=�11�2�=�11, e15�1�=−e15�2�=e15, h15�1�
=−h15�2�=h15, �11�1�=�11�2�=�11. The bimaterial constant
matrix can be obtained from Eq. �15�. The non-zero ele-

ments in �Ē� are given in Eq. �37�. In particular, for a fully
permeable crack between two same magnetoelectroelastic
layers polarized in opposite directions, we also have: KD
=KB=0.

Once the crack-tip magnetoelectroelastic field intensity factors
have been obtained, the energy release rate and the angular distri-
bution of the magnetoelectroelastic fields are given by Eqs. �24�
and �22�, respectively.

4.6 A Crack between a Piezoelectric Layer and a Piezo-
magnetic Layer. Now consider the case of a piezoelectric layer
bonded with a piezomagnetic layer shown in Fig. 2. In this prob-
lem, the magnetic potential in the piezoelectric layer and the elec-
tric potential in the piezomagnetic layer should vanish, and the

bimaterial constant matrix �Ē� defined in Eq. �15� has the form of
Eq. �40�. Because of the continuity of the stress �yz, the mechani-
cal displacement, the electric potential, and the magnetic potential
must satisfy the following relations �deduced from Eq. �51��:

c44�1�w
+ + h15�1��

+ = c44�2�w
− + e15�2��

−. �65�

The equivalent mechanical, electrical, and magnetical loads 	0,
D0, and B0 are expressed as follows:

� 	0

B0
� =

1

h
�c44�1� h15�1�

h15�1� − �11�1�
��w+

�+ �, � 	0

D0
�

= −
1

h
�c44�2� e15�2�

e15�2� − �11�2�
��w−

�− � . �66�

In this case, the stress intensity factor remains the same as that

given in Eq. �56�:
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KIII = 	02h tanh��a

2h
� , �67�

which are valid for both the piezoelectric layer and the piezomag-
netic layer, either for the permeable crack assumption or for the
impermeable crack assumption.

The crack-tip electric displacement intensity factor KD and the
electric displacement inside the crack d0 exist only in the piezo-
electric layer �layer No. 2�. They have the following forms:

• For electrically impermeable crack,

d0 = 0, KD = D02h tanh��a

2h
� . �68�

• For electrically permeable crack,

d0 = D0 −
e15�2�

c44�2�
	0, KD =

e15�2�

c44�2�
KIII. �69�

The crack-tip magnetic induction intensity factor KB and
the magnetic induction inside the crack b0 exist only in the
piezomagnetic layer �layer No. 1�. They have the following
forms:

• For magnetically impermeable crack,

b0 = 0, KB = B02h tanh��a

2h
� . �70�

• For magnetically permeable crack,

b0 = B0 −
h15�1�

c44�1�
	0, KB =

h15�1�

c44�1�
KIII. �71�

When the crack-tip field intensity factors are obtained, the an-
gular distributions of stresses, electric displacements, and mag-
netic inductions can be obtained from Eqs. �22�, and the energy

release rate G determined from Eq. �24�, in which the matrix �Ē�
is defined by Eq. �40�. It is clear that the values of G are different
for the piezoelectric layer and the piezomagnetic layer. G also
depends on the crack-face electric and magnetic boundary condi-
tion assumptions.

4.7 Solution for an Infinitesimal Crack and a Semi-Infinite
Crack. In Subsections 4.1–4.6, the thickness of the magnetoelec-
troelastic layers h is finite. From the solutions given in these sub-
sections, it is possible to obtain the solutions for an infinitesimal
crack �i.e., for a�h�. Since

lim
h→�

2h tanh��a

2h
� = �a , �72�

solutions for the infinitesimal crack are obtained by replacing the
quantity 2h tanh��a /2h� in Subsections 4.1–4.6 with �a.

Closed-form expressions are also available for a semi-infinite
crack in magnetoelectroelastic layers. In this case, the crack
length a is considerably larger than the magnetoelectroelastic lay-
ers �i.e., for a�h�. Since

lim
a→�

2h tanh��a

2h
� = 2h , �73�

and solutions for the semi-infinite crack are derived by replacing
the quantity 2h tanh��a /2h� in Subsections 4.1–4.6 with 2h.

After obtaining the crack-tip field intensity factors, the angular
distributions of the magnetoelectroelastic fields can be obtained

from Eqs. �22� and the energy release rate G from Eq. �24�.
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5 Conclusions
An interface crack in a two-layered magnetoelectroelastic me-

dium subjected to mechanical, electrical, and magnetical loads on
its surfaces are studied in this paper and the following points are
noted.

• Closed-form solution has been obtained for a crack between
two dissimilar magnetoelectroelastic layers of finite thick-
ness. Expressions for the crack-tip field intensity factors, the
electromagnetic fields inside the crack are given. The elec-
trically and magnetically impermeable and permeable crack
assumptions are investigated.

• The energy release rate can be explicitly expressed in terms
of the field intensity factors for the interface cracks in lay-
ered magnetoelectroelastic media �by Eq. �24�, in which the

material constant matrix �Ē� is given by Eq. �15��. The ex-
pression is valid not only for interface cracks in two-layer
media, but also valid for interface cracks in multilayered
media.

• Closed-form solutions for a center crack in a homogeneous
magnetoelectroelastic layer, a crack between two similar
magnetoelectroelastic layers polarized in opposite direc-
tions, and a crack between a piezoelectric layer and a piezo-
magnetic layer are obtained.

• Applications of electric and magnetic fields do not alter the
stress intensity factors. The values of the stress intensity
factor are identical for any kind of crack-face electric and
magnetic boundary condition assumptions �i.e., the crack-
face electric and magnetic boundary conditions have no ef-
fect on the stress intensity factor.�. The result of the stress
intensity factor is the same as the solution for the elastic
materials given by Li �23�.

Acknowledgment
The authors would like to thank the Australian Research Coun-

cil �ARC� for the financial support of this project. The authors
�B.L.W. and Y.W.M.� are, respectively, Australian Research Fel-
low and Australian Federation Fellow, supported by the ARC and
tenable at the University of Sydney.

References
�1� Alshits, I., Darinskii, A. N., and Lothe, J., 1992, “On the Existence of Surface

Waves in Half-Anisotropic Elastic Media With Piezoelectric and Piezomag-
netic Properties,” Wave Motion, 16, pp. 265–283.

�2� Van Run, A. M. J. G., Terrell, D. R., and Scholing, J. H., 1974, “An In Situ
Grown Eutectic Magnetoelectric Composite Material,” J. Mater. Sci., 9, pp.
1710–1714.

�3� Bracke, L. P. M., and Van Vliet, R. G., 1981, “A Broadband Magnetoelectric
Transducer Using a Composite Material,” Int. J. Electron., 51, pp. 255–262.

�4� Benveniste, Y., 1995, “Magnetoelectric Effect in Fibrous Composites With
Piezoelectric and Piezomagnetic Phases,” Phys. Rev. B, 51, pp. 16,424–
16,427.

�5� Pan, E., and Heyliger, P. R., 2002, “Free Vibrations of Simply Supported and
Multilayered Magnetoelectroelastic Plates,” J. Sound Vib., 252, pp. 429–442.

�6� Liu, J.-X., Liu, X., and Zhao, Y., 2001, “Green’s Functions for Anisotropic
Magnetoelectroelastic Solids With an Elliptical Cavity or a Crack,” Int. J. Eng.
Sci., 39�12�, pp. 1405–1418.

�7� Gao, C. F., Kessler, H., and Balke, H., 2003a, “Crack Problems in Magneto-
electroelastic Solids. Part I: Exact Solution of a Crack,” Int. J. Eng. Sci., 41,
pp. 969–981.

�8� Gao, C. F., Kessler, H., and Balke, H., 2003b, “Crack Problems in Magneto-
electroelastic Solids. Part II: General Solution of Collinear Cracks,” Int. J.
Eng. Sci., 41, pp. 983–994.

�9� Gao, C. F., Tong, P., and Zhang, T. Y., 2004, “Fracture Mechanics for a Mode
III Crack in a Magnetoelectroelastic Solid,” Int. J. Solids Struct., 41, pp.
6613–6629.

�10� Zhou, Z. G., Wang, B., and Sun, Y. G., 2004, “Two Collinear Interface Cracks
in Magnetoelectroelastic Composites,” Int. J. Eng. Sci., 42, pp. 1155–1167.

�11� Wang, B. L., and Mai, Y.-W., 2003, “Crack Tip Field in Piezoelectric/
Piezomagnetic Media,” Eur. J. Mech. A/Solids, 22, pp. 591–602.

�12� Wang, B. L., and Mai, Y.-W., 2004, “Fracture of Piezoelectromagnetic Mate-
rials,” Mech. Res. Commun., 31, pp. 65–73.

�13� Gao, C. F., Tong, P., and Zhang, T. Y., 2004, “Fracture Mechanics for a Mode
III Crack in a Magnetoelectroelastic Solid,” Int. J. Solids Struct., 41, pp.

6613–6629.

MARCH 2006, Vol. 73 / 289



�14� Liu, J. X., Liu, X. L., and Zhao, Y. B., 2001, “Green’s Functions for Aniso-
tropic Magnetoelectroelastic Solids With an Elliptical Cavity or a Crack,” Int.
J. Eng. Sci., 39, pp. 1405–1418.

�15� Tian, W. Y., and Gabbert, U., 2005a, “Macrocrack-Microcrack Interaction
Problem in Magnetoelectroelastic Solids,” Mech. Mater., 37�5�, pp. 565–592.

�16� Tian, W. Y., and Gabbert, U., 2005b, “Parallel Crack Near the Interface of
Magnetoelectroelastic Bimaterials,” Comput. Mater. Sci., 32�3–4�, pp. 562–
567.

�17� Chung, M. Y., and Ting, T. C. T., 1995, “The Green Function for a Piezoelec-
tric Piezomagnetic Anisotropic Elastic Medium With an Elliptic Hole or Rigid
Inclusion,” Philos. Mag. Lett., 72, pp. 405–410.

�18� Hu, K. Q., and Li, G. Q., 2005, “Constant Moving Crack in a Magnetoelec-
troelastic Material under Antiplane Shear Loading,” Int. J. Solids Struct.,
42�9–10�, pp. 2823–2835.

�19� Ryu, J., Priya, S., Carazo, A. V., Uchino, K., and Kim, H. E., 2001, “Effect of
290 / Vol. 73, MARCH 2006
Magnetostricitive Layer on Magnetoelectric Properties in Lead Zirconate
Titanate/Terfenol-D Laminate Composites,” J. Am. Ceram. Soc., 84, pp.
2905–2908.

�20� Ryu, J., Priya, S., Uchino, K., and Kim, H. E., 2002, “Magnetoelectric Effect
in Composites of Magnetostrictive and Piezoelectric Materials,” J. Electroce-
ram., 8, pp. 107–119.

�21� Harshe, G., Dougherty, J. P., and Newnham, R. E., 1993, “Theoretical Mod-
eling of Multiplayer Magnetoelectric Composites,” Int. J. Appl. Electromagn.
Mater., 4, pp. 145–159.

�22� Chen, Z. R., Yu, S. W., Lu, M., and Ye, L., 2002, “Effective Properties of
Layered Magnetoelectroelastic Composites,” Compos. Struct., 57, pp. 177–
182.

�23� Li, X. F., 2001, “Closed-Form Solution for a Mode III Interface Crack Be-
tween Two Bonded Dissimilar Elastic Layers,” Int. J. Fract., 109, pp. L3–L8.
Transactions of the ASME



E. Mitsoulis1

e-mail: mitsouli@metal.ntua.gr

S. Sofou

School of Mining Engineering and Metallurgy,
National Technical University of Athens,

Zografou 15780,
Athens, Greece

Calendering Pseudoplastic and
Viscoplastic Fluids With Slip at
the Roll Surface
The lubrication approximation theory (LAT) is used to provide numerical results for
calendering a sheet from an infinite reservoir. The Herschel–Bulkley model of viscoplas-
ticity is employed, which reduces with appropriate modifications to the Bingham, power-
law, and Newtonian models. A dimensionless slip coefficient is introduced to account for
the case of slip at the roll surfaces. The results give the final sheet thickness as a function
of the dimensionless power-law index (in the case of pseudoplasticity), the Bingham
number or the dimensionless yield stress calculated at the nip (in the case of viscoplas-
ticity), and the dimensionless slip coefficient in both cases. Integrated quantities of engi-
neering interest are also calculated. These include the maximum pressure, the roll-
separating force, and the power input to the rolls. Decreasing the power-law index or
increasing the dimensionless yield stress lead to excess sheet thickness over the thickness
at the nip. All engineering quantities calculated in dimensionless form increase substan-
tially with the departure from the Newtonian values. The presence of slip decreases
pressure and the engineering quantities and increases the domain in all
cases. �DOI: 10.1115/1.2083847�
1 Introduction
The calendering process is used in a variety of industries, in-

cluding those of paper, plastics and rubber, for the production of
rolled sheets or films of specific thickness and final appearance.
The procedure has been theoretically introduced by Gaskell �1�
and involves the feed from an infinite reservoir of a pair of co-
rotating and equal sized heated rolls �calenders� with a material to
form a sheet �Fig. 1�a�� �2�. A variation of the process is to feed
the calenders with a finite sheet �Fig. 1�b��.

With regard to the case of calendering from an infinite reser-
voir, both the acquired sheet thickness and the values of the rel-
evant engineering quantities �such as maximum pressure values�
are primarily dependent on the rheological properties of the ma-
terial. Since many materials used in calendering are frequently
non-Newtonian, exhibiting pseudoplastic �shear thinning or thick-
ening� �2� or viscoplastic �presence of a yield stress� behavior
�see, e.g., Bird et al. �3��, a model that covers both cases is em-
ployed. The Herschel–Bulkley model has the advantage of
reducing—with an appropriate choice of parameters—to the Bing-
ham, power-law, or Newtonian model. In simple shear flow, it
takes the form �3�:

� = K��̇�n−1�̇ ± �y, for ��� � �y , �1a�

�̇ = 0, for ��� � �y , �1b�

where � is the shear stress, �̇=du /dy is the shear rate �or velocity
gradient in the y direction�, u is the axial velocity, �y is the appar-
ent yield stress, K is the consistency index, and n is the power-law
index. Note that when n=1 and K=� �a constant�, the Herschel–
Bulkley model reduces to the Bingham model. When �y =0, the
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power-law model is recovered, and when �y =0 and n=1, the
Newtonian model is obtained.

It should be noted that in viscoplastic models, when the shear
stress � falls below �y, a solid structure is formed �unyielded�. The
two regions �yielded/unyielded� are separated by a yield line, re-
lated to the pressure gradient in the flow as will be shown later. A
previous work by the authors �4� has studied the process of cal-
endering by assuming no slip at the wall. Since many materials,
with or without yield, are known to exhibit slip at the wall �5�, it
is the purpose of the present work to study in a parametric manner
the process of calendering for pseudoplastic and viscoplastic ma-
terials obeying the Herschel–Bulkley model with slip at the wall.

2 Mathematical Modeling

2.1 Governing Equations. Gaskell �1� carried out an early
analysis of calendering, while Middleman �2� gave in his textbook
the theoretical treatment and known results up to 1977. As ex-
plained by Middleman �2� and with regard to Fig. 1, the lubrica-
tion approximation theory �LAT� regards locally fully developed
shear flow between the rolls. The conservation of momentum then
gives

dP

dx
=

d�xy

dy
, �2�

where �xy =� is the shear stress in the transverse direction. In the
present work, we use the Herschel–Bulkley model of viscoplas-
ticity to express the shear stress �Eq. �1��. It then follows from Eq.
�2� that the yield line, y0, which separates yielded from unyielded
regions, is obtained when the shear stress � is equal to the yield
stress �y, i.e.,

�dP

dx
� =

�y

y0
. �3�

For the integration of Eq. �2�, boundary conditions �BCs�
should be applied. For symmetric calendering we have �2�,

�BC-1� �xy = 0 at y = 0. �3a�
Also, for the case of calendering with slip at the roll surface �5�,
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�BC-2� u = U − ��w
a , � � 0, at y = h�x� , �3b�

where U is the roll speed, �w is the wall shear stress, � is the slip

coefficient, and � is a slip parameter. Note that the limit �→0

taken at the nip �x=0�, i.e.,

292 / Vol. 73, MARCH 2006
corresponds to the case of no slip, while �→� gives perfect slip,
thus vanishing wall shear stress. The case of the slip exponent �
=1 corresponds to a linear slip law, while �=2 corresponds to a
quadratic slip law.
After the appropriate manipulations, we obtain:
u =�
U − ��w

a +
1

�n + 1�
n

dP

dx
K1/n

�	y	dP

dx

 	 �y
n+1/n

− 	h	dP

dx

 	 �y
n+1/n� ,

y � y0,

U − ��w
a +

1

�n + 1�
n

dP

dx
K1/n

�	y0	dP

dx

 	 �y
n+1/n

− 	h	dP

dx

 	 �y
n+1/n� ,

y � y0.� �4�
Equation �4� incorporates both cases: The minus sign is valid in
that part of the domain where the pressure gradient is positive
�dP /dx�0�, while the plus sign is valid where the pressure gra-
dient is negative �dP /dx
0�. These regions can only be deter-
mined after an expression for the pressure gradient is found.

Integration of the velocity profile gives the volumetric flow rate
Q �noting that �y =y0�dP /dx��. In the case of the Bingham plastic
model �n=1�, the result is

Q = 2
0

h

udy = 2�U − ��w
�� −

�2h + y0�
3

	 1

�

dP

dx

�h − y0�2, �5�

while for the general case of the Herschel–Bulkley fluids, the
result is

Q = 2h�U − ��w
a � −

2n��n + 1�h + ny0�
�n + 1��2n + 1�

	 1

K

dP

dx

1/n

�h

− y0�n+1/n, for dP/dx � 0, �6a�

Q = 2h�U − ��w
�� +

2n��n + 1�h + ny0�
�n + 1��2n + 1�

	−
1

K

dP

dx

1/n

�h

− y0�n+1/n, for dP/dx 
 0. �6b�

The pressure gradient dP /dx is obtained from Eq. �6�.

2.2 Dimensionless Variables. In calendering, the following
dimensionless parameters are introduced �2,4�:

x� =
x

�2RH0

, y� =
y

H0
, P� =

P

K
	H0

U

n

,

�2 =
Q

2UH0
− 1, h = H0	1 +

x2

2RH0

, A =�2R

H0
, �7�

where � is a dimensionless flow rate �or leave-off distance� and
the rest of the symbols are defined in Fig. 1. Note that A is a
geometric parameter.

Because of viscoplasticity, some extra dimensionless variables
are needed. A dimensionless apparent yield stress can be defined
by:

�y
* =

�y

�dP

dx
�H0

=
y0

H0
= y0�, �8�

Note that because dP /dx is a function of x, so is the yield line y0.
So, in order to have an unequivocal definition of �y

*, its value is
��y
*�x=0 =

�y

�dP

dx
�

x=0
H0

=
y0,0

H0
= y0,0� , �9�

which means that the unyielded line goes from 0 �viscous fluid� to
1 �unyielded solid� at the nip.

Also, in viscoplasticity, the well-known Bingham number is
defined as

Bn =
�y

K
	H0

U

n

. �10�

It then follows that:

y0� =
Bn

�dP�

dx�
�A . �11�

In all cases, the purely viscous fluid corresponds to �y
*=0 and

Bn=0. However, at the other extreme of an unyielded solid,

Fig. 1 Schematic representation of the calendering process
and definition of variables: „a… Feed from an infinite reservoir

and „b… feed with a finite sheet
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�y
* � x=0→1 and Bn→�.

Because of the slip law, it is also necessary to consider a di-
mensionless expression for the slip coefficient, � �6�:

B =
�

U
	K	 U

H0

n
�

. �12�

After the appropriate manipulations, we obtain the following
equation for the dimensionless pressure gradient:

Fig. 2 Pressure distribution for power-law fluids with n=0.5,
for various values of the slip coefficient, B

Fig. 3 Pressure distribution for power-law fluids with a slip

coefficient B=0.01, for various values of the power-law index, n

Journal of Applied Mechanics
��2 − x�2� =
dP�

dx�
�−

B�1 + x�2���+1�

A� �dP�

dx�
��−1

−
n

2n + 1

1

A1/n�dP�

dx�
�1/n−1	1 + x�2 +

n

n + 1
y0�
�1 + x�2

− y0��
n+1/n� . �13�

The above equation can be written in the following form:

Fig. 4 Pressure distribution for Bingham plastics with Bn
=0.1, for various values of the slip coefficient, B

Fig. 5 Pressure distribution for Bingham plastics with a slip
coefficient B=0.01, for various values of the Bingham number,

Bn
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dP�

dx�
= A	2n + 1

n

n ��x�2 − �2� − B��n−1

��1 + x�2� +
n

n + 1
y0��n

��x�2 − �2� − B��
�1 + x�2 − y0��

n+1 ,

�14�

where B� = B�1 + x�2���+1�	 1

A

dP�

dx�

�

. �15�

From the analysis conducted for Newtonian and power-law flu-
ids �2�, we know that for −�
x�
−�, the pressure gradient is
positive and the minus sign in Eq. �4� is valid, while for −�

x�
� the pressure gradient is negative and the plus sign in Eq.
�4� is valid. Equation �14� suggests that these distinct regions
could be altered in the presence of slip, as more roots are feasible
due to the complexity of the equation.

For the no-slip case, for which B=B�=0, the following remarks
can be made. When y0�=0, the above equation is simplified to the
one given by Middleman �2� for the power-law fluids, while for
y0�=0 and n=1, it is reduced to the one for Newtonian fluids. For
n=1 and y0��0, the above equation can be used for the Bingham
plastics.

Integration of Eq. �14� will provide the pressure distribution in
the domain. For this, boundary conditions are necessary for the
pressure and its gradient. For the case of calendering from an
infinite reservoir these are �2�:

Table 1 Dimensionless leave-off distance, ��, for power-law
fluids, and for various values of the slip coefficient, B

n B=0 B=10−2 B=10−1 B=100 B=101 B=102

0.1 0.5414 0.5440 0.5680 0.7632 0.7973 0.7973
0.2 0.5217 0.5246 0.5507 0.7276 0.7973 0.7973
0.3 0.5085 0.5115 0.5380 0.6972 0.7949 0.7973
0.4 0.4991 0.5022 0.5283 0.6717 0.7867 0.7972
0.5 0.4923 0.4953 0.5204 0.6502 0.7740 0.7964
0.6 0.4871 0.4900 0.5138 0.6320 0.7589 0.7935
0.7 0.4831 0.4858 0.5083 0.6163 0.7429 0.7884
0.8 0.4799 0.4825 0.5036 0.6027 0.7270 0.7813
0.9 0.4773 0.4798 0.4995 0.5907 0.7117 0.7728
1 0.4751 0.4775 0.4958 0.5802 0.6971 0.7634

1.1 0.4733 0.4755 0.4926 0.5708 0.6834 0.7535
1.2 0.4718 0.4739 0.4897 0.5624 0.6706 0.7434
1.3 0.4705 0.4724 0.4872 0.5548 0.6587 0.7332
1.4 0.4694 0.4712 0.4849 0.5480 0.6476 0.7231
1.5 0.4685 0.4701 0.4828 0.5417 0.6373 0.7132
1.6 0.4676 0.4691 0.4809 0.5360 0.6277 0.7036
1.7 0.4668 0.4682 0.4791 0.5308 0.6187 0.6943
1.8 0.4662 0.4675 0.4775 0.5260 0.6103 0.6853
1.9 0.4656 0.4667 0.4761 0.5215 0.6025 0.6766
2 0.4650 0.4661 0.4748 0.5174 0.5952 0.6683

Fig. 6 Dimensionless leave-off distance, ��, for pseudoplastic
fluids as a function of the power-law index, n, for various val-
ues of the slip coefficient, B
294 / Vol. 73, MARCH 2006
P� =
dP�

dx�
= 0, at x� = ��. �16a�

P� = 0, at x� → − � . �16b�

Then, the pressure is obtained from the integral:

P� = A	2n + 1

n

n

x�

�� ��x�2 − �2� − B��n−1

��1 + x�2� +
n

n + 1
y0��n

�B� − �x�2 − �2��
�1 + x�2 − y0��

n+1 dx�.

�17�

The dimensionless leave-off distance, ��, corresponding to an
infinite reservoir, can be found from the above equation, noting
that P��x�→−��=0. Therefore, �� can be found from the rela-
tion:

0 =
−�

�� ��x�2 − �2� − B��n−1

��1 + x�2� +
n

n + 1
y0��n

�B� − �x�2 − �2��
�1 + x�2 − y0��

n+1 dx�. �18�

The yield line, y0�, appearing in the above equations is a variable
that can be expressed either as a function of kinematic parameters
�i.e., roll speed� or dynamic parameters �i.e., pressure gradient�.
The expressions for the yield line are thus either a function of the
Bingham number, Bn, Eq. �11�, or the dimensionless yield stress,
��y

*�x=0, by combining Eqs. �8� and �9�:

y0� = y0,0�

�dP�

dx�
�

x=0

�dP�

dx�
� = ��y

*�x=0

�dP�

dx�
�

x=0

�dP�

dx�
� . �19�

Table 2 Dimensionless leave-off distance, ��, for Bingham
plastics with Bn=0.005, and for various values of the slip coef-
ficient, B

B �� ��y
*�x=0

0 0.4757 0.0073
10−2 0.4781 0.0074
10−1 0.4967 0.0087
100 0.5827 0.0195
101 0.7056 0.1033
102 0.7861 0.8092

Fig. 7 Dimensionless leave-off distance, ��, for viscoplastic
fluids as a function of the dimensionless yield stress calcu-
lated at the nip, ��y

* �x=0, for various values of the slip coefficient,
B
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3 Method of Solution
Considering Eq. �11�, Eq. �18� can be written as

0 =��

I�n,Bn,B�dx�. �20�

Fig. 8 Operating variables for pseudoplastic fluids as a func-
tion of the power-law index, n, for various values of the slip
coefficient, B: „a… maximum pressure, P, „b… force factor, F, and
„c… power factor, E
−�

Journal of Applied Mechanics
The above integral has no analytical solution for the general
case of Herschel–Bulkley fluids. Therefore, a numerical solution
must be found based on some numerical algorithm.

The input data are the entry point, xf� �which is set to −100 for
the infinite case�, the material rheological data, i.e., n, Bn, the slip
parameters, � ,B, and the number of x intervals, N=100,000. The
large number of intervals is justified due to the long domain �xf�

Fig. 9 Operating variables for Bingham plastics as a function
of the dimensionless yield stress calculated at the nip, ��y

* �x=0,
for various values of the slip coefficient B: „a… maximum pres-
sure, P, „b… force factor, F, and „c… power factor, E
=−100� and the highly nonlinear behavior of Eq. �13� at the limits
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,

of non-Newtonian behavior. The modified regula falsi numerical
method �or linear interpolation method of false position, a variant
of the bisection method� �7� is used to solve the governing equa-
tion and acquire the pressure-gradient distribution. Simpson’s rule
is used to compute the above integral, while the modified regula
falsi method is used again in order to find the value of �� for
which the pressure vanishes. Note that the yield line can be com-

Fig. 10 Operating variables for Herschel–Bulkley fluids with
n=0.5 as a function of the dimensionless yield stress calcu-
lated at the nip, ��y

* �x=0, for various values of the slip coefficient,
B: „a… maximum pressure, P, „b… force factor, F, and „c… power
factor, E
puted from Eq. �19�, using the acquired pressure-gradient values.
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Before proceeding with the calculations, the following observa-
tion should be made. By combining the expressions for the Bing-
ham number �Bn� and the slip parameter �B�—Eqs. �10� and �12�,
respectively—we find:

B =
�

U
	 �y

Bn

�

. �21�

The above equation suggests that the Bingham number and the
dimensionless slip coefficient are in fact correlated. In order to
determine which combinations of values for the two parameters
correspond to feasible solutions, we examine the location of the
yield line at the nip, which should be �1. For given values of the
slip parameter, B, the calculations start with Bn=0, for which the
yield line ��y

*�x=0=0, and end at some value of Bn, for which
��y

*�x=0�1. In this way, the acceptable �Bn, B� values are the ones
for which �0��y

*�x=0
1.
Once �� is found as a function of n, Bn, and B, then all other

quantities of interest are readily available. The exiting sheet thick-
ness H is given by:

H

H0
= 1 + ��

2 . �22�

4 Operating Variables
The operating variables used in engineering calculations are

also of interest �2�:

�1� The maximum pressure, P �n ,Bn,B�, defined by:

P�n,Bn,B� =
Pmax�

A
= 	2n + 1

n

n

−��

��

I�n,Bn,B�dx�,

�23�
�2� The roll-separating force per unit width W, F /W�n ,Bn,B�,

defined by:

F

W
=

−�

��

P�x�dx = K	 U

H0

n

RF�n,Bn,B� , �24a�

with F�n,Bn,B�

= 2	2n + 1

n

n

−�

�� �
x�

��

I�n,Bn,B�dx��dx�

�24b�
�3� The power input for both rolls, Ẇ�n ,Bn,B�, defined by:

Ẇ�n,Bn,B� = 2WU
−�

��

��xy�y=h�x�dx

= WU2K	 U

H0

n−1� R

H0
E�n,Bn,B� ,

�25a�

with E�n,Bn,B� = − 2�2	2n + 1

n

n

−�

��

I�n,Bn,B��1

+ x�2�dx�. �25b�

5 Results and Discussion
First, the calculations are pursued for pseudoplastic fluids, both

shear thinning �0
n�1� and shear thickening �1�n�2�. Next,
the calculations are pursued for viscoplastic fluids, including

Bingham plastics and Herschel–Bulkley fluids. In both cases, the
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impact of slip conditions at the wall is examined. All results pre-
sented here are for a linear slip law ��=1� for ease of
presentation.

5.1 Pressure Distribution. We begin presenting our results
by showing the pressure distributions obtained for pseudoplastic
power-law fluids for different values of the power-law index n and
the slip coefficient B.

In Fig. 2, we plot the dimensionless pressure distribution along
the domain for a shear-thinning fluid with n=0.5 and for different
values of B. The case of B=0 corresponds to no-slip conditions.
We observe that slip reduces the pressure curves, as expected, but
increases the domain �higher sheet thickness at exit�. For the case
of B=1 �macroscopically obvious slip�, the maximum pressure
has been reduced to about 40% of the pressure for no-slip
conditions.

In Fig. 3, we plot the dimensionless pressure distribution along
the domain for a given slip coefficient B=0.01 and various power-
law fluids. Decreasing the power-law index n results in a bigger
domain, thus a higher sheet thickness at the exit, and in a more
pointed shape of the pressure curve at the maximum.

Fig. 11 Yielded and unyielded regions in calendering accordin
for a Bingham plastic without slip „Bn=1 and B=0…, „c… calcula
Figure 4 shows the dimensionless pressure distribution along

Journal of Applied Mechanics
the domain for a Bingham plastic with Bn=0.1 and for different
values of B. The presence of slip has the same impact as in the
case of pseudoplastic fluids; i.e., it reduces the pressure curves
and increases the domain �and, consequently, the exit sheet thick-
ness�. For the case of B=1 �macroscopically obvious slip�, the
maximum pressure is reduced by 41%, compared to the no-slip
condition.

In Fig. 5, we plot the dimensionless pressure distribution for a
given slip coefficient B=0.01, and for various Bingham plastics.
The bigger the Bingham number Bn, the bigger the domain, and
the more pointed the shape of the pressure curve at the maximum.

5.2 Leave-Off Distance and Final Sheet Thickness. The re-
sults are shown in Fig. 6 for the dimensionless leave-off distance
��, while numerical values are given in Table 1. With regard to
the no-slip case, the well-known Newtonian value �for n=1� of
��=0.475 is a starting point, after which it is noted that shear-
thinning increases this value �for n=0.1 by 14%�, while shear-
thickening decreases it �for n=2 by 2%�. Moreover, it is noted that
the impact of slip on the leave-off distance is smaller for bigger
values of the power-law index. For the case of macroscopically

o LAT: „a… qualitatively predicted by Gaskell †1‡, „b… calculated
for a Bingham plastic with slip „Bn=1 and B=0.1…
g t
ted
obvious slip �B=1�, the domain increases up to 41% for extreme
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shear-thinning conditions �n=0.1�, up to 22% for the Newtonian
case, and up to 11% for extreme shear-thickening conditions �n
=2�.

Calculations were carried out for the whole range of values of
the dimensionless yield stress at the nip, ��y

*�x=0, i.e., �0��y
*�x=0


1. The results for the Bingham plastic model are shown in Fig.
7 as a function of ��y

*�x=0, while Table 2 lists the numerical results
for Bingham plastics with Bn=0.005. The well-known Newtonian
value �for Bn= ��y

*�x=0=0� of ��=0.475 is again a starting point for
the no-slip case, after which it is noted that viscoplasticity in-
creases the values, finally reaching the limit for fully plastic flow
of no deformation, i.e., for ��y

*�x=0�1, ��=0.571. This corre-
sponds to a sheet produced 1.33 times thicker than the nip. In-
creasing the slip coefficient B leads to bigger leave-off distance
values. This effect is weaker for bigger values of the Bingham
number, and the initial differentiation among the various slip cases
is reduced for intense viscoplastic conditions.

5.3 Operating Variables. The results from the current calcu-
lations are shown in Fig. 8 for the power-law pseudoplastic fluids,
in Fig. 9 for the Bingham plastics, and in Fig. 10 for Herschel–
Bulkley fluids with n=0.5. The Newtonian values for a no-slip
case are P=0.3802, F=1.2234, and E=4.5162, in excellent agree-
ment with the values given by Middleman �2�. Further decreasing
the power-law index, n, or increasing the dimensionless yield
stress at the nip, ��y

*�x=0, increases these dimensionless quantities
for the pseudoplastic and viscoplastic materials. However, the
maximum values acquired for the Bingham and the Herschel–
Bulkley materials are much bigger.

The presence of slip decreases these engineering quantities, cal-
culated in a dimensionless form, for both pseudoplastic and vis-
coplastic materials. With regard to pseudoplastic fluids, and for
the case of macroscopically obvious slip �B=1�, the Newtonian
values mentioned above for P, F, and E, decrease by 55%, 43%,
and 26%, respectively. For the case of viscoplastic materials, the
effect of slip is a little more pronounced for bigger values of the
dimensionless yield stress calculated at the nip, ��y

*�x=0. However,
as the slip coefficient increases, it becomes dominant, and the
effect of viscoplasticity is much smaller. The same conclusions
can be drawn for the Herschel–Bulkley fluids, noting that the
values acquired for Herschel–Bulkley fluids with n=0.5 are big-
ger, compared to those for Bingham plastics with n=1, due to the
increase of the pseudoplastic character.

5.4 Yield-Line Location and Stress/Velocity Profiles. The
yield lines separate the yielded areas from the unyielded ones, and
serve as a contour of the stress, which is equal to the yield stress
along these lines. The first qualitative approach of the shape of the
yielded and unyielded regions was given by Gaskell �1�, and is
depicted in Fig. 11�a�. After obtaining the pressure-gradient val-
ues for the domain, Eq. �11� or Eq. �19� can be used to draw these
regions quantitatively. The calculated yield lines are given for a
Bingham plastic with no slip �Bn=1 and B=0� in Fig. 11�b�.
Previous work carried out by the authors �8� showed the progres-
sive growth of the unyielded regions, with increasing viscoplas-
ticity. The present approach confirms Gaskell’s suggestion that a
plug profile should be expected at the points where x�= ±�. This,
however, is only valid for the no-slip case. Figure 11�c� depicts
the shape of the yielded and unyielded areas for a case where both
viscoplasticity and slip conditions are encountered �Bn=1 and B
=0.1�. As discussed previously, the final sheet thickness is in-
creased, and so is the dimensionless yield stress at the nip, ��y

*�x=0.
Furthermore, a plug profile is observed for a region around x�
= ±�, as suggested by Eq. �14�.

Readily available from the pressure-gradient results are the
axial distributions of the shear stresses along the roll surface, ac-
cording to Eq. �2�. The effect of slip on the axial shear stress
profile of a Bingham plastic is examined in Fig. 12. The shear

stress is calculated at the wall �roll surface� and divided by the
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absolute value at the nip, for a Bingham plastic without slip �Bn
=1 and B=0� and with slip �Bn=1 and B=0.1�. The sign of the
shear stress follows the pressure-gradient sign, being positive only
for −�
x�
−�. The presence of slip broadens the domain, as
discussed earlier, adds more curvature, and results in a smooth
transition from the positive to the negative values of the wall
shear stress.

The increase in �, the dimensionless flow rate or leave-off dis-
tance, may also be observed in Fig. 13, where the axial dimen-
sionless velocity is depicted along the centerline from −�
x�

 +�, for the same conditions. The maximum velocity value is

Fig. 12 Axial shear stress distributions at the roll surface for a
Bingham plastic without slip „Bn=1 and B=0… and with slip
„Bn=1 and B=0.1…

Fig. 13 Axial velocity distribution along the centerline for a
Bingham plastic without slip „Bn=1 and B=0… and with slip

„Bn=1 and B=0.1… in the region −�<x�< +�
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observed at the nip. At that point, the velocity of the Bingham
plastic without slip is 1.33 times bigger than the roll speed. The
presence of slip has no impact on the bell shape of the curves, it
does however increase the material velocity uniformly along the
domain, which explains the increase in �, the dimensionless flow
rate. With the presence of slip, the material velocity value at the
center is 1.36 times bigger than the roll speed. It should be noted
that the velocity beyond −� is further reduced and is not shown
here due to the length of the domain �up to −100�.

6 Critique on the Lubrication Approximation Theory
Both the mathematical analysis and results presented in this

work are carried out by making use of the LAT. An important
question is therefore raised, regarding the impact of this approxi-
mation on the quality of the results.

LAT regards locally fully developed flow and simplifies the
conservation equations. Furthermore, LAT becomes even more
questionable in the case where the presence of plasticity is in-
duced by a curved boundary and it is interesting to investigate the
“paradox” pointed out by Lipscomb and Denn �9�, by which
yielded regions appear where none should have. A closer look at
the physics of the problem and at Fig. 11 reveals that the shaded
areas cannot be rigid plugs, since the speeds at the entry and exit
are different, and it is not therefore reasonable to accept that a
constant speed occurs along the centerline. The use of LAT is
therefore inadequate with regard to shaping the yielded and un-
yielded regions. A sample test-case calculation of the full two-
dimensional �2D� problem showed a continuing paraboliclike de-
velopment of the centerline velocity profile �such as the ones in
Fig. 13� and the lack of any yielded/unyielded regions.

However, the same test calculation showed that the domain
length, the pressure distribution, and the resulting operating vari-
ables were within 1% of the values found by LAT. This is also
confirmed by previous work �10� regarding the calendering of
pseudoplastic fluids, which has proved that this approach, com-
pared to a full 2D analysis of the process, gives good results for
the pressure distribution and hence for all the resulting integrated
quantities.

7 Conclusions
The lubrication approximation has been used to derive numeri-

cal solutions for the dimensionless leave-off distance and common
engineering quantities, for the case of calendering pseudoplastic
Journal of Applied Mechanics
and viscoplastic fluids from an infinite reservoir. The inclusion of
a slip boundary condition has been the major thrust of the present
work, as it is known that many calendered materials exhibit slip at
the wall.

In the case of power-law fluids, it was found that shear thinning
increases the final sheet thickness, while shear thickening reduces
it. In the case of viscoplastic materials, the increase in the dimen-
sionless yield stress also leads to increased values for the leave-off
distance �and consequently for the sheet thickness�. The presence
of slip increases sheet thickness for both cases. Operating vari-
ables, such as maximum pressure, roll-separating force, and
power input to both rolls, all increase—in dimensionless form—
with increasing pseudoplasticity �shear thinning� and viscoplastic-
ity, and decrease under slip conditions.

It has been argued that the use of LAT is adequate with regard
to obtaining such quantities as the ones presented here, although
the prediction for the yielded and unyielded regions is erroneous.
The present work is a prelude for more elaborate results to be
obtained from a fully 2D analysis of the process, as done earlier
for Newtonian and power-law fluids �see, e.g., �10��. Such work is
currently under way by the authors.
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Prediction of Falling Cylinder
Through Air-Water-Sediment
Columns
A falling rigid body through air, water, and sediment is investigated experimentally and
theoretically. Two experiments were conducted to drop rigid cylinders with density ratio
around 1.8 into shallow water (around 13 m deep) in the Monterey Bay (Exp-1) and into
the Naval Postgraduate School’s swimming pool (Exp-2). During the experiments, we
carefully observe cylinder track and burial depth while simultaneously taking gravity
cores (in Exp-1). After analyzing the gravity cores, we obtain the bottom sediment density
and shear strength profiles. The theoretical work includes the development of a 3D rigid
body impact burial prediction model (IMPACT35) that contains three components: triple
coordinate transform and hydrodynamics of a falling rigid object in a single medium (air,
water, or sediment) and in multiple media (air-water and water-sediment interfaces). The
model predicts the rigid body’s trajectory in the water column and burial depth and
orientation in the sediment. The experimental data (burial depth, sediment density, and
shear strength) show the capability of IMPACT35 in predicting the cylinder’s trajectory
and orientation in a water column and burial depth and orientation in sediment.
�DOI: 10.1115/1.2125975�
1 Introduction
Study on the movement of a rigid body in fluid has wide sci-

entific significance and technical application. The scientific stud-
ies of the hydrodynamics of a rigid cylinder in fluid involve the
nonlinear dynamics, flight theory, body-fluid interaction, and in-
stability theory. The body forces include the gravity and the buoy-
ancy force. The hydrodynamic forces include the drag and lift
forces that depend on the fluid-to-body velocity and the impact
force as the body penetrates the air-water or water-sediment inter-
faces. Usually, a nonlinear dynamical system is needed to predict
a falling rigid body in fluid, e.g., �1�.

Recently, the scientific problem about rigid body movement in
the air-water-sediment columns drew attention to the naval re-
search. This is due to the threat of mines in the naval operations.
Within the past 15 years three U.S. ships, the USS Samuel B.
Roberts �FFG-58�, Tripoli �LPH-10�, and Princeton �CG-59� have
fallen victim to mines. Total ship damage was $125 million while
the mines cost approximately $30,000 �2�. Mines have evolved
over the years from the dumb “horned” contact mines that dam-
aged the Tripoli and Roberts to ones that are relatively
sophisticated—nonmagnetic materials, irregular shapes, anechoic
coatings, multiple sensors, and ship count routines. Despite their
increased sophistication, mines remain inexpensive and are rela-
tively easy to manufacture, keep, and place. Water mines are char-
acterized by three factors �3,4�: position in water �bottom,
moored, rising, and floating�, method of delivery �aircraft, surface,
and subsurface�, and method of actuation �acoustic and/or mag-
netic influence, pressure, contact, and controlled�. Accurate mine
burial predictions are inherently difficult to make because of un-
certainties in both mine deployment conditions and the relevant
environmental parameters �5�. The U.S. Navy developed opera-

1To whom correspondence should be addressed.
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tional models to predict the environmental parameters for mine
burial prediction �6�. Recently, statistical methods such as the
Monte Carlo method �7� and the expert system method �5� have
been developed. These methods need a core-physical model for
describing the movement of falling rigid body through air-water-
sediment columns.

When the rigid body is cylindrical, this dynamical system can
be simplified using three coordinate systems: earth-fixed coordi-
nate �E-coordinate�, cylinder’s main-axis following coordinate
�M-coordinate�, and hydrodynamic force following coordinate �F-
coordinate�. The origin of both M- and F-coordinates is at the
cylinder’s center of mass �COM�. The body forces and their mo-
ments are easily calculated using the E-coordinate system. The
hydrodynamic forces and their moments are easily computed us-
ing the F-coordinate. The cylinder’s moments of gyration are sim-
ply represented using the M-coordinate. Recently, Chu et al. �8�
developed a recursive model to predict the cylinder’s translation
velocity and orientation in the water column �single phase� on the
base of the triple coordinate transformation.

To extend the recursive model from single medium �water col-
umn� to multi-media �air, water, sediment�, a falling cylinder
through air-water and water-sediment interfaces �i.e., cylinder
contacting with two media� should be particularly analyzed. The
cylinder is decomposed into two parts with each one contacting
one medium. For the air-water penetration, the cylinder is decom-
posed into air and water parts. For the water-sediment penetration,
the cylinder is decomposed into water and sediment parts. The
body forces �such as the buoyancy force� and surface forces �such
as pressure and hydrodynamic force� are computed separately for
the two parts. A fully three-dimensional model is developed for
prediction of the translation velocity and orientation of falling
rigid cylinder through air, water, and sediment. Theoretical model
development and a cylinder drop experiment for the model evalu-
ation are depicted in this paper.

The outline of this paper is as follows: Section 2 depicts the
triple coordinate systems. Section 3 describes the dynamics for
determining the cylinder’s translation velocity and orientation.
Section 4 presents the equivalent cylinder method for computing
hydrodynamic forces and torques when the cylinder penetrates the
air-water and water-sediment interfaces. Section 5 describes

forces and torques in air and water. Section 6 describes the resis-
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tance from sediments. Section 7 shows the model integration. Sec-
tion 8 describes two cylinder drop experiments and observational
data processing. Section 9 presents the model-data inter compari-
son. The conclusions are listed in Sec. 10.

2 Triple Coordinate Systems
Consider an axially symmetric cylinder with the centers of

mass �COM� X �or called gravity center �GC� in literatures� and
center of volume �COV� B on the main axis �Fig. 1�. Let �L ,R ,��
represent the cylinder’s length, radius, and the distance between
the two points �X ,B�. The positive � values refer to nose-down
case, i.e., the point X is lower than the point B. Three coordinate
systems are used to model the falling cylinder through the air,
water, and sediment phases: earth-fixed coordinate �E-coordinate�,
main-axis following coordinate �M-coordinate�, and force follow-
ing coordinate �F-coordinate� systems. All the systems are three-
dimensional, orthogonal, and right-handed �8�.

2.1 E-Coordinate. The E-coordinate is represented by
FE�O, i , j ,k� with the origin “O” and three axes: x, y axes �hori-
zontal� with the unit vectors �i , j� and z axis �vertical� with the
unit vector k �upward positive�. The position of the cylinder is
represented by the position of the COM,

X = xi + yj + zk , �1�

which is translation of the cylinder. The translation velocity is
given by

dX

dt
= V, V = �u,v,w� . �2�

2.2 M-Coordinate. Let orientation of the cylinder’s main axis
�pointing downward� be given by iM. The angle between iM and k
is denoted by �2+� /2. Projection of the vector iM onto the �x ,y�
plane creates angle ��3� between the projection and the x axis
�Fig. 2�. The M-coordinate is represented by FM�X , iM, jM,kM�
with the origin “X”, unit vectors �iM, jM,kM�, and coordinates
�xM,yM,zM�. In the plane consisting of vectors iM and k �passing
through the point M�, two new unit vectors �jM,kM� are defined
with jM perpendicular to the �iM,k� plane, and kM perpendicular
to iM in the �iM,k� plane. The unit vectors of the M-coordinate
system are given by �Fig. 2�

jM = kM � iM, kM = iM � jM . �3�

The M-coordinate system is solely determined by orientation of
the cylinder’s main axis iM. Let the vector P be represented by EP
in the E-coordinate and by MP in the M-coordinate, and let M

E R be

Fig. 1 M-coordinate with the COM as the origin X and „im , jm…
as the two axes. Here, � is the distance between the COV „B…

and COM „X…, „L ,R… are the cylinder’s length and radius.
the rotation matrix from the M-coordinate to the E-coordinate,

Journal of Applied Mechanics
M
E R��2,�3� � �r11 r12 r13

r21 r22 r23

r31 r32 r33
� = �cos �3 − sin �3 0

sin �3 cos �3 0

0 0 1
�

�� cos �2 0 sin �2

0 1 0

− sin �2 0 cos �2
� , �4�

which represents �iM, jM,kM�,

iM = �r11

r21

r31
�, jM = �r12

r22

r32
�, kM = �r13

r23

r33
� . �5�

Transformation of MP into EP contains rotation and translation,
EP = M

E R��2,�3�MP + X . �6�

Let the cylinder rotate around �iM, jM,kM� with angles
��1 ,�2 ,�3� �Fig. 2�. The angular velocity of cylinder is calculated
by

�1 =
d�1

dt
, �2 =

d�2

dt
, �3 =

d�3

dt
, �7�

Fig. 2 Three coordinate systems
and
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�1 = �1,
d�2

dt
=

d�2

dt
= �2,

d�3

dt
�

d�3

dt
. �8�

If ��1 ,�2 ,�3� are given, time integration of �7� with the time
interval �t leads to

��1 = �1�t, ��2 = �2�t, ��3 = �3�t . �9�

The increments ���2 ,��3� are determined by the relationship be-
tween the two rotation matrices M

E R��2+��2 ,�3+��3� and

M
E R��2 ,�3�;

M
E R��2 + ��2,�3 + ��3� = M

E R��2,�3��cos���3� − sin���3� 0

sin���3� cos���3� 0

0 0 1
�

�� cos���2� 0 sin���2�
0 1 0

− sin���2� 0 cos���2�
� . �10�

2.3 F-Coordinate. The F-coordinate is represented by
FF�X , iF , jF ,kF� with the origin X, unit vectors �iF , jF ,kF�, and
coordinates �xF ,yF ,zF�. Let Vw be the fluid velocity. The fluid-to-
cylinder velocity is represented by Vr= Vw−V that is decom-
posed into two parts,

Vr = V1 + V2, V1 = V1iF, V2 = V2jF, �11�

where

V1 = �Vr · iF�iF

is the component parallel to the cylinder’s main axis �i.e., along
iM�, and

V2 = Vr − �Vr · iF�iF

is the component perpendicular to the cylinder’s main-axial direc-
tion. The unit vectors for the F-coordinate are defined by �column
vectors�

iF = iM = �r11

r21

r31
�, jF = V2/�V2�, kF = iF � jF. �12�

The F-coordinate system is solely determined by orientation of the
cylinder’s main-axis �iM� and the water-to-cylinder velocity. Note
that the M- and F-coordinate systems have one common unit vec-
tor iM �orientation of the cylinder�.

Let F
ER be the rotation matrix from the F-coordinate to the

E-coordinate,

F
ER��2,�3,�MF� � �r11 r12� r13�

r21 r22� r23�

r31 r32� r33�
�, �MF � �jM,jF� , �13�

which leads to

iF = �r11

r21

r31
�, jF = �r12�

r22�

r32�
�, kF = �r13�

r23�

r33�
� . �14�

Here, �MF is the angle between the two unit vectors �jM, jF�. Let
the vector P be represented by FP in the F-coordinate. Transfor-
mation of FP into EP contains rotation and translation,

EP = F
ER��2,�3,�MF�FP + X . �15�

Use of the F-coordinate system simplifies the calculations for the
lift and drag forces and torques acting on the cylinder. Since the
M- and F-coordinates share a common axis iM= iF, the rotation

matrix from the F- to M- coordinate systems is given by
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F
MR = E

MRF
ER = M

E R−1��2,�3�F
ER��2,�3,�MF� = �1 0 0

0 e22 e23

0 e32 e33
�
�16�

it is two-dimensional with the rotation matrix given by

F
ME = �e2 e3 �, e2 = 	e22

e32

, e3 = 	e23

e33

 . �17�

Let the cylinder rotate around �iF , jF ,kF� with the angular ve-
locity components represented by ��1

F ,�2
F ,�3

F� �Fig. 2�. They are
connected to the angular velocity components in the M-coordinate
system by

�1
F = �1, 	�2

F

�3
F 
 = M

F E	�2

�3

 . �18�

3 Dynamics

3.1 Momentum Balance. The translation velocity of the cyl-
inder �V� is governed by the momentum equation in the
E-coordinate system,

d

dt�u

v

w
� = − �0

0

g
� +

Fnh + Fh

	

, �19a�

where g is the gravitational acceleration, 
 is the cylinder vol-
ume, 	 is the rigid body density, 	
=m, is the cylinder mass, Fnh
is the nonhydrodynamic force, and Fh is the hydrodynamic force
�i.e., surface force including drag, lift, impact forces�. Both Fnh
and Fh are integrated for the cylinder. The drag and lift forces are
calculated using the drag and lift laws with the given water-to-
cylinder velocity �Vr�. In the F-coordinate, Vr is decomposed into
along-cylinder �V1� and across-cylinder �V2� components.

The nonhydrodynamic force Fnh is the buoyancy force �Fb� for
the air and water phases,

Fnh = Fb = k�	a
g,	w
g� ,

where �	a ,	w� are the air and water densities. Fnh is the resultant
of the buoyancy force �Fb�, pore water pressure force �Fpw�, and
shearing resistance force �Fs� for the sediment phase �see Sec. 6�.

3.2 Moment of Momentum Equation. It is convenient to
write the moment of momentum equation,

J ·
d�

dt
= − 2J · �� � �� + Mnh + Mh, �20�

in the M-coordinate system with the cylinder’s angular velocity
components ��1 ,�2 ,�3� defined by �19a� and �19b�. Here, the
first term on the right-hand side is an apparent torque �similar to
the Corilois term in earth science� due to the use of the rotating
coordinate system �i.e., the M-coordinate�, and

� = �2jM + �3kM �21�

is the angular velocity of the M-coordinate system. If �1=0, then
�=�, which leads to

− 2J · �� � �� = �0, if �1 = 0 �i.e.,� = �� ,

− 2J2�1�3jM + 2J3�1�2kM, if �1 � 0.
�
�22�

In this study, the apparent torque is neglected. The gravity force,
passing the COM, does not induce the moment. Mnh and Mh are
the nonhydrodynamic and hydrodynamic force torques. In the
M-coordinate system, the moment of gyration tensor for the axi-

ally symmetric cylinder is a diagonal matrix
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J = �J1 0 0

0 J2 0

0 0 J3
� , �23�

where J1, J2, and J3 are the moments of inertia. The buoyancy
force induces the moment in the jM direction if the COM does not
coincide with the COV �i.e., ��0�,

Mb = �Fb�� cos �2jM. �24�

Computation of nonhydrodynamic and hydrodynamic forces
�Fnh,Fh� and torques �Mnh,Mh� is more complicated for a cylin-
der penetrating through air-water and water-sediment interfaces
than falling through a single medium such as water. At the in-
stance when the cylinder penetrates into an interface, three situa-
tions may exist: the cross section is a complete ellipse �Fig. 3�a��,
a cutoff ellipse with one side straight line �Fig. 3�b��, or a cutoff
ellipse with two straight lines �Fig. 3�c��. The interface separates
the cylinder to two parts. Each part contains a noncylinder D and
a subcylinder C �Fig. 4�. Let �Lc ,Ld�, ��c ,�d� and �
c ,
d� be
the lengths, surfaces, and volumes of �C ,D�, and �h1 ,h2� the
depths of the two sides of D �Fig. 5�. The characteristics of the
geometric parameters �Lc ,h1 ,h2� are listed in Table 1. The COV
for the portion �C ,D� is called the partial COV �PCOV�.

4 Equivalent Cylinder Method

4.1 Equivalent Cylinder. During penetration, the part that
contacts fluid �air or water� is treated as a cylinder �E� with the
same mass and PCOV location and with the assumption that the
buoyancy and hydrodynamic forces and torques for �C ,D� are the
same for �E�. The cylinder �E�, called the equivalent cylinder, is
used to represent the part �C ,D�. Thus, the theoretical procedure
developed for calculating external forcing �buoyancy and hydro-
dynamic forces and torques� for a cylinder �8� can be easily used
for �E�.

Fig. 3 Three patterns of cylinder penetration with the cross
section being „a… a complete ellipse, „b… a cutoff ellipse with
one side straight line, and „c… a cutoff ellipse with two side
straight lines

Fig. 4 Illustration of PCOV „B−
…, x1, and �− for the tail part

„1… „1…

†C ,D ‡ for the case in Fig. 3„a…

Journal of Applied Mechanics
4.2 Volume of †C ,D‡. In the M-coordinate system, the area
of the vertical cross section of D is given by

s�x� = R2 cos−11 −
h�x�

R
� − �R − h�x���R2 − �R − h�x��2,

�25a�

where h�x� is the depth of the cross section,

h�x� = h1 +
�h

Ld
�x − x1�, �h = h2 − h1, �25b�

where Ld is the length of D �see Fig. 5�. Integration of s�x� along
x axis gives the volume of D,


d =�
x1

x2

s�x�dx =
R3Ld

�h
��1,2� = �R2ld, �26�

where

1 = 1 −
h1

R
, 2 = 1 −

h2

R
, �27a�

��1,2� � 1 cos−1�1� − �1 − 1
2 + 1

3 �1 − 1
2�3/2 − 2 cos−1�2�

+ �1 − 2
2 − 1

3 �1 − 2
2�3/2, �27b�

and

ld =
RLd

��h
��1,2� . �27c�

Here, ld is the equivalent length of D. The volume of C is calcu-
lated by


c = �R2Lc. �28�

The total volume of �C ,D� is


 = �R2l ,

and

l = Lc + ld

is the length of the equivalent cylinder E.

Fig. 5 Geometry of the part D„1…

Table 1 Geometric parameters during the cylinder penetration

Lc h1 h2

Upper and lower parts of Fig. 3�a� �0 2R 0
Upper part of Fig. 3�b� �0 2R 0�2R
Lower part of Fig. 3�b� 0 0�2R 0
Upper and lower parts of Fig. 3�c� 0 0�2R 0�2R
MARCH 2006, Vol. 73 / 303



4.3 PCOV of †C ,D‡. Let ��+ ,�+� and ��− ,�−� be the PCOV
of the head �C ,D� �in the direction of iM� or tail �in the opposite
direction of iM� �C ,D� �denoted by B±, positive sign for the head
part� in the M-coordinate system,

��±,�±� =
1



����
c

�x,z�dv + ���
d
�x,z�dv�

=
1


c + 
d
	x1 ±

Lc

2
,0�
c +�

x1

x2

�x,z�s�x�dx
 .

�29�

where x1 is defined as the location of interface between C and D.
Substitution of �25a�, �25b�, �26�, and �28� into �29� leads to

�± = x1 �
R�h

��1,2�Ld�1 + ��hLc�
−1Ld

−1�

�	 Ld

�h
�2

�x�1,2� ±
1

2
Lc

R
�2
 , �30�

�± = ± sign�cos �2�
R

6��1,2��1 + ��hLc�
−1Ld

−1�
�z�1,2� ,

�31�
where

�x�1,2� �
1

4
��22

2 − 1�cos−12 − �21
2 − 1�cos−11 + 1

�1 − 1
2

− 2
�1 − 2

2� +
1

4
�2

��1 − 2
2�3 − 1

��1 − 1
2�3�

−
1

8
�2

�1 − 2
2 − 1

�1 − 1
2 + sin−12 − sin−11�

− 1�2 cos−12 − 1 cos−11 + �1 − 1
2 − �1 − 2

2�

−
1

3
���1 − 2

2�3 − ��1 − 1
2�3� ,

�z�1,2� � 1
��1 − 1

2�3 − 2
��1 − 2

2�3 +
3

2
�1

�1 − 1
2

− 2
�1 − 2

2 + sin−11 − sin−12� . �32�

Let �� ,�� be ��+ ,�+� for the head part and ��− ,�−� for the tail
part. The position vector of PCOV in the M-coordinate system is
represented by

rPCOV = �iM + �kM. �33�

5 Forces and Torques in Air and Water
Calculation of the buoyancy force and torque is straightfor-

ward. Calculation of the surface force and torque is not simple.
Assume that the surface force and torque on the equivalent cylin-
der E are the same on the �C ,D�. If �C ,D� moves in fluid �air or
water�, the recursive model recently developed �8� can be used to
calculate for equivalent cylinder E. Thus, the water column is
taken as the example to illustrate the calculation of the hydrody-
namic force and torque. Computation of the surface force and
torque due to sediment is described in Sec. 6.

5.1 Buoyancy Force and Torque. The buoyancy force Fb is
the product of the air �or water� density and volume,

Fb = 	�
c + 
d�k = 	�R2�Lc + ld�k . �34�

The torque due to the buoyancy force for the upper or lower part

is given by
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Mb = rPCOV � Fb. �35�

Substitution of �33� and �34� into �35� leads to

Mb = − 	�R2�Lc + ld��� cos �2 + � sin �2�jM. �36�

5.2 Drag and Lift Forces. The drag and lift forces exerted on
the cylinder is represented by

Fh = �Fd1iF + Fd2jF + Fd3kF� + Fl, �37�

where �Fd1 ,Fd2 ,Fd3� are the components of drag force along iF
�along-cylinder�, jF �across-cylinder� and kF directions. Fl repre-
sented the lift force. Linearization of drag and lift laws is used in
the computation.

Let �Cd1 ,Cd2� be the drag coefficients in the along- and across-
cylinder directions �Reynolds number dependent�. The drag force
coefficients are calculated on the base of steady flow; they is
different from the fluid around an accelerated solid body. The
added mass correction is represented by the ratios �f1 , f2 , f3� in the
three directions of the F-coordinate system.

The drag force along iF is calculated by

Fd1 = Ctd1�t�V1, �38�

Ctd1�t� � Cd1
�R2

2

	w

�1 + f1�
�V1�t�� . �39�

Cd1 is almost independent on the axial Reynolds number �Re�
when Re�104, but dependent on the cylinder’s aspect ratio �9�,

Cd1 = �1.0, if � � 8,

0.75 + �/32.1934 + 0.09612/�2, if 8 � � � 0.5,

1.15, if � � 0.5.
�

�40�

Substitution of �11� and �12� into �38� leads to

Fd1iF = − Ctd1�t�I11 · ��u

v

w
� − �uw

vw

ww
��, I11 = iFiF

T, �41�

where the superscript “T” denotes the transpose.
The drag force along jF is calculated by

Fd2 = R�
−L/2−�

L/2−�

Cd2�V2��
2 	w

�1 + f2�
d� = Ctd2�t�V2 + frd2�t� ,

�42�

where

V2���� = V2 − �3
F�

is the water-to-cylinder velocity at the surface in the jF direction
and

Ctd2�t� � 2Cd2LR
	w

�1 + f2�V2

2
+ ��3

F� , �43a�

frd2�t� � 2Cd2LR
	w

�1 + f2�1

2
�2 +

1

24
L2���3

F�2. �43b�
An empirical formula is used for calculating Cd2 �10�
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Cd2 =�
1.9276 + 8/Re, if Re � 12,

1.261 + 16/Re, if 12 � Re � 180,

0.855 + 89/Re, if 180 � Re � 2000,

0.84 + 0.000 03 Re, if 2000 � Re � 12,000,

1.2 − 4/� , if 12,000 � Re � 150,000, � � 10,

0.835 − 0.35/� , if 12,000 � Re � 150,000, 2 � � � 10,

0.7 − 0.08/� , if 12,000 � Re � 150,000, � � 2,

1.875 − 0.000 004 5 Re, if 150,000 � Re � 350,000,

1/�641,550/Re + 1.5� , if Re � 350,000.

� �44�
Substitution of �11� and �12� into �42� leads to

Fd2jF = − Ctd2�t�I22 · ��u

v

w
� − �uw

vw

ww
�� + frd2�t�jF, I22 = jFjF

T.

�45�

The angular velocity ��2
F� causes nonuniform water-to-cylinder

velocity in the kF direction,

V3 = �2
F� . �46�

The drag force along kF is calculated by

Fd3 = 	Cd2R
	w

�1 + f2�
�2

F��2
F��

0

L
2

−�

�2d� −�
− L

2
−�

0

�2d��
kF

= frd3�t�kF, �47�

where

frd3�t� � −
1

6
Cd2

	wR

�1 + f2�
��3L2 + 4�2���2

F��2
F �48�

is the rotational drag force in the kF direction.
The water-to-cylinder velocity determines the lift force �11�

Fl = 	Ctl�t�
L �

−L/2−�

L/2−�

V2����d�
kF, Ctl�t� � ClLR
	w

�1 + f2�
�V2� ,

�49�

where Cl is the lift coefficient. An empirical formula is used for
calculating Cl �12�,

Cl = �2�1R/V2, if �1R/V2 � 4,

8 + 0.24��1R/V2 − 4� , if �1R/V2 � 4.
� �50�

Substitution of �11� and �12� into �49� leads to

Fl = − Ctl�t�I32 · ��u

v

w
� − �uw

vw

ww
�� + frl�t�kF, I32 = kFjF

T,

�51�

where

frl�t� � Ctl�t���3
F

is the rotational lift force. Substitution of �41�, �45�, �47�, and �51�

into �37� and use of �14� lead to
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Fh = − �Ctd1�t�I11 + Ctd2�t�I22 + Ctl�t�I32� · ��u

v

w
� − �uw

vw

ww
�� + frd2�t�

��r12�

r22�

r32�
� + �frd3�t� + frl�t���r13�

r23�

r33�
� . �52�

Substitution of �52� into �19a� leads to the cylinder’s momentum
equation,

d

dt�u

v

w
� = − D · �u

v

w
� + �1, �19b�

where

�1 � D · �uw

vw

ww
� − � 0

0

�1 − 	w/	�g
� + b1�r12�

r22�

r32�
� + b2�r13�

r23�

r33�
� ,

D �
Ctd1�t�I11 + Ctd2�t�I22 + Ctl�t�I23

	

, b1 �

frd2�t�
	


,

b2 �
frd3�t� + frl�t�

	

.

5.3 Drag and Lift Torques. For an axially symmetric cylin-
der, the moment of the hydrodynamic force in the iF direction is
not caused by the drag and lift forces, but by the viscous fluid. The
moment of the viscous force of steady flow between two rotating
cylinders with the common axis is calculated by �1�

M = 4��
r1

2 · r0
2

r1
2 − r0

2 ��1 − �0� ,

where �r1 ,r0� and ��1 ,�0� are the radii and angle velocities of the
inner and outer cylinders and � is the viscosity. The moment of
the viscous force on one rotating cylinder is th limit case of the
two rotating cylinders as r0→� and �0=0. The moment of the
viscous force around iF is calculated by

Mv1 = − Cm1�1iF, Cm1 � ��Ld2. �53�

Same as the hydrodynamic forces, the torques along the jF and
kF axes, �Md1 ,Md2 ,Ml�, are calculated. When the cylinder rotates
around jF with the angular velocity �2

F, the drag force causes a
torque on the cylinder in the jF direction,

Md2 = 	− �2
F��2

F��
−L/2−�

L/2−�

Cd2R
	w

�1 + fr�
�2���d�
jF

= − �Cm2�t��F�jF, �54�
2
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Cm2�t� �
1

2
Cd2R

	w

�1 + fr�
 1

16
L4 +

3

2
L2�2 + �4���2

F� ,

where fr is the added mass factor for the moment of drag and lift
forces. If the water-to-cylinder velocity or the cylinder mass dis-
tribution is nonuniform ���0�, the drag force causes a torque on
the cylinder in the kF direction,

Md3 = 	�
−L/2−�

L/2−�

Cd2R
	w

�1 + fr�
�V2 − �3

F��2�d�
kF

= − �Cm3�t��3
F + M3�t��kF, �55�

Cm3�t� � Cd2R
	w

�1 + fr�
1

6
V2L3 + V2L�2 +

1

4
L3�3

F� + L�3�3
F� ,

�56a�

M3�t� � Cd2R
	w

�1 + fr�
V2

2L� . �56b�

The lift force exerts a torque on the cylinder in the jF direction,

Ml2 = 	−�
−L/2−�

L/2−�

ClR
	w

fkr
�V2 − �3

F���d�
jF

= �Cml�t��3
F + Ml�t��jF, �57�

Cml�t� � ClV2R
	w

�1 + fr�
L 1

12
L2 + �2�, Ml�t� � R

	w

fkr
LV2

2� .

�58�

After the angular velocity components ��2
F ,�3

F� are transformed
into ��2 ,�3� �from the F-coordinate to the M-coordinate� using
�18�, and the unit vectors �jF ,kF� are transformed into �jM,kM�
using the rotation matrix �17�, the drag force torques in the jF
direction �54� and in the kF direction �55� are represented by

Md2 = − Cm2�t�H22 · 	�2

�3

, H22 = e2e2

T, �59�

Md3 = − Cm3�t�H33 · 	�2

�3

 − M3�t�e3, H33 = e3e3

T, �60�

and the lift torque in the jF �57� is represented by

Ml2 = Cml�t�H23 · 	�2

�3

 + Ml�t�e2, H23 = e2e3

T. �61�

Summation of �53� and �59�–�61� leads to

Mh = M� + Md2 + Md3 + Ml2

= − Cm1�1iF − �Cm2�t�H22 + Cm3�t�H33 − Cml�t�H23� · 	�2

�1



+ Ml�t�e2 − M3�t�e3. �62�

6 Resistant Forces in Sediment

6.1 Water Cavity. As the cylinder impacts and penetrates
into the sediment, it pushes the sediment and leaves space in the
wake. This space is refilled by water right away and a water cavity
is produced �Fig. 6�. At the instant of the penetration, the total
resistant force on the cylinder is represented by

Fs =�
�sed

���fb
s + fsh� + fb

w + fh
w�d� + Fpw, �63�

where �fb
s , fsh� and �fb

w , fh
w� are the sediment buoyancy and shear
resistance forces and water buoyancy and hydrodynamic forces
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�per unit area� at the point r over the cylinder’s surface; �sed is the
area of the cylinder’s surface below the water-sediment interface;
and Fpw is the pore water pressure force on the whole cylinder. In
the sediment, the magnitude of the sediment nonhydrostatic force
is much larger than the magnitude of the water hydrodynamic
force,

�fs� � �fh
w� ,

which means that fh
w in �63� can be neglected. The water buoyancy

force per unit area over the cylinder’s surface is defined by

fb
w = − 	wg�zws − z�n , �64�

where zws is the depth of the water-sediment interface and n is the
unit vector normal to the cylinder surface �outward positive�.

Let v be the velocity at point r �represented in the
M-coordinate� on the cylinder surface,

v = V + � � r .

The step function � is defined by

� = �1, v · n � 0,

0, v · n � 0,
� �65�

which shows that the sediment buoyancy and shear resistance
forces act when the cylinder moves towards it. Let vn be the
normal velocity. The tangential velocity is represented by

v� = v − vn. �66�

The tangential unit vector ��� is defined by

� = −
v�

�v��
, �67�

which is opposite to v� �Fig. 7�.

6.2 Sediment Resistant Forces. When the cylinder impacts
and penetrates into the sediment, it will create a large transient
pore pressure in the sediment that causes ruptures in the sediment
which influences the lifting forces on the cylinder �13,14�.

The sediment buoyancy force per unit area is defined by

fb
s = − n�

z

zws

	s�z��gdz�, �68�

where 	s�z� is the sediment density.
The shear resistant force per unit area fsh depends on the cyl-

inder’s penetration speed �V� and the sediment strength. Let S�z�
be the sediment shear strength. The shear strength is defined as the

Fig. 6 The impact „resistant… force exerted on the part of the
object’s surface moving towards the sediment
maximum stress that a material can withstand before failure in
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shear. Calculation of shear strength depends upon the test method.
After entering the water-sediment interface, the cylinder re-

duces its speed �V�, and the sediment shearing resistant force also
decreases. When the cylinder ceases, the shearing resistant force
should be the same as the sediment shear strength S�z�. Thus, the
shearing resistant force is represented by

fsh = S�z�G�V��, G�0� = 1, �69�

where G�V� is the impact function defined by

G�V� = A	1 − �1 − A−1�exp−
V

Vrest
�
 . �70�

Here, Vrest is an infinitesimally small value for V representing the
cease of the cylinder in the sediment. The impact function has the
following feature,

Lim
V→�

G�V� = A , �71�

which shows that when the cylinder impacts on the sediment �usu-
ally with large penetration speed�, the impact function takes the
value of A. Thus, we may call A the impact factor. Note that A and
Vrest are the two tuning parameters of the numerical model. In this
study we use

A = 10, Vrest = 0.04 m s−1. �72�
The shear strength of the sediment is directly measured from the
gravity cores using the fall cone apparatus �model G-200� �see
Sec. 8.2�.

The total force due to the pore water pressure on the cylinder is
computed by �15�

Fpw = 	�

8
	s�z�gw

kp
+

1 + ev

ev

dw

dt
�B3
k , �73�

where kp is the permeability coefficient �10−4 m s−1 �15��,
ev��0.50� is the void ratio, and B is the length of the rupture line.
Substitution of �64�, �68�, �69�, and �73� into �63� leads to

Fs =�
�sed

����G�V�S�z��d� −�
�sed

n	��
z

zws

	s�z��gdz��
+ 	wg�zws − z�
d� + k

�

8
	s�z�gw

kp
+

1 + ev

ev

dw

dt
�B3, �74�

which is the external force acted on the cylinder in the sediment
s

Fig. 7 Momentum and angular momentum balance for the cyl-
inder’s penetration through the water-sediment interface
phase. The torque due to the sediment �M � is calculated by
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Ms =�
�sed

�r � �����G�V�S�z��d� +�
�sed

�r � n�

�	��
z

zws

	s�z��gdz�� + 	wg�zws − z�
d�

+ �rpw � k�
�

8
	s�z�gw

k
+

1 + ev

ev

dw

dt
�B3. �75�

where rpw is the position vector �in the M-coordinate� indicating
the location of the cylinder’s rupture line.

7 Model Integration
The momentum equation �19a� and �19b� and moment of mo-

mentum equation �20� are integrated numerically using the triple
coordinate transformation. The momentum equation is integrated
in the E-coordinate system. The hydrodynamic �drag and lift�
force is transformed from the F-coordinate to the E-coordinate.
The moment of momentum equation is integrated in the
M-coordinate system. The hydrodynamic torque is transformed
from the F-coordinate to the M-coordinate. After the cylinder pen-
etrates into the sediment, the resistant force due to sediment fs

reduces the cylinder’s speed and changes the turning angle.

7.1 Cylinder’s Angular Velocity. Substitution of �24� and
�62� into �20� leads to the equations for ��1 ,�2 ,�3�,

d�1

dt
= − a1�1, �76�

d

dt
	�2

�3

 = − B · 	�2

�3

 + �2, �77�

where

a1 �
Cm1

J1
=

8��L

	

,

B � �
1

J2
0

0
1

J3

� · �Cm2�t�H22 + Cm3�t�H33 − Cml�t�H23� ,

�2 � �
1

J2
0

0
1

J3

� · �Mle2 − M3e3� +

�g	w

J2
cos �2	1

0

 . �78�

Equation �76� has the analytical solution

�1�t� = �1�t0�exp�− a1�t − t0�� , �79�
which represents damping rotation of the cylinder around the
main axis �iM�. Substitution of �79� into �8� leads to

d�1

dt
= �1�t0�exp�− a1�t − t0�� ,

and its integration leads to

�1�t� = −
�1�t0�

a1
exp�− a1�t − t0�� + �1�t0� . �80�

Equations �79� and �80� are the analytic formulas for predicting
the angle and angular velocity around the cylinder’s main axis
��1 ,�1�.

7.2 Recursive Procedure. The basic equations �19a�, �19b�,
�77�, �79�, and �80� describe the dynamics of the falling cylinder.

It is noted that the coefficient matrices B, D and the vectors �1,
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�2 depend on drag/lift coefficients. Besides, B, D, �1, �2 depend
on the fluid-to-cylinder velocity and cylinder’s angular velocity.
Equations �19a�, �19b�, and �79� are nonlinear equations.

Let matrices B and D be separated into diagonal and nondiago-
nal parts,

D = D1 + D2, D1 � �d1 0 0

0 d2 0

0 0 d3
�, D2 � � 0 d12 d13

d21 0 d23

d31 d32 0
� ,

�81�

B = B1 + B2, B1 � 	b1 0

0 b2

, B2 � 	 0 b12

b21 0

 . �82�
Substitution of �81� into �19a� and �19b� leads to

Practically, the following criteria are used to stop the integration,
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dV

dt
= − D1 · V + �, � � �1 − D2 · V, V = �u

v

w
� � �v1

v2

v3
� ,

�83a�

and substitution of �82� into �77� leads to

d

dt
	�2

�3

 = − B1 · 	�2

�3

 + �, � � �2 − B2 · 	�2

�3

 . �83b�

If B1, D1, � , � are taken the values given at the present time step
tn, �83a� and �83b� can be treated as “linear” equations �local
linearization� on �t , t +�t� and integrated analytically,
n n
vi�tn+1� = �vi�tn� + �i�tn��t , if di�tn� = 0,

vi�tn� −
�i�tn�
di�tn�

�exp�− di�tn��t� +
�i�tn�
di�tn�

, if di�tn� � 0, i = 1,2,3, � �84�

and

�i�tn+1� = ��i�tn� + �i�tn��t , if di�tn� = 0,

�i�tn� −
�i�tn�
bi�tn�

�exp�− bi�tn��t� +
�i�tn�
bi�tn�

, if di�tn� � 0, i = 2,3. � �85�

Integration of �83a� twice from tn leads to the translation position of the cylinder at tn+1,

xi�tn+1� = �xi�tn� + vi�tn��t + 1
2�i�tn��t2, if di�tn� = 0,

xi�tn� +
�i�tn�
di�tn�

�t −
1

di�tn�
vi�tn� −

�i�tn�
di�tn�

��exp�− di�tn��t� − 1� , if di�tn� � 0, � �86�

where x1�x, x2�y, and x3�z. Integration of �83b� twice from tn leads to the change of rotation angles ��2 ,�3� at tn+1,

��i�tn+1� = ��i�tn��t + 1
2�i�tn��t2, if bi�tn� = 0,

�i�tn�
bi�tn�

�t −
1

bi�tn�
�i�tn� −

�i�tn�
bi�tn�

��exp�− bi�tn��t� − 1� , if bi�tn� � 0, i = 2,3. � �87�
Equations �84� and �85� are the recursive formulas for predict-
ing the cylinder’s translation velocity �u ,v ,w� and angular veloc-
ity ��1 ,�2 ,�3�, and Eqs. �86� and �87� are the recursive formulas
for predicting the cylinder’s translation position �x ,y ,z� and rota-
tion angle increments ���2 ,��3� in the M-coordinate system. The
cylinder’s orientation is represented by angles ��1 ,�2 ,�3� with
�1=�1, and a relationship between ���2 ,��3� and ���2 ,��3�
given by �10�.

Let �x�t0� ,y�t0� ,z�t0� ,u�t0� ,v�t0� ,w�t0�� be the cylinder’s initial
translation and velocity and ��1�t0� ,�2�t0� ,�3�t0� ,�1�t0� ,
�2�t0� ,�3�t0�� be the cylinder’s initial orientation and angular ve-
locity. Following the procedures listed in Fig. 8, the values of
these variables for next time step �t= t1� are calculated. Repeat of
the procedures leads to predicting the cylinder’s position and ori-
entation as falling through the water column.

Theoretically, the model integration stops when the vertical co-
ordinate of COM �i.e., z�t�� in the E-coordinate and the elevation
angle �2�t� in the M-coordinate do not change with time �in the
sediment column�:

dz

dt
= 0,

d�2

dt
= 0. �88�
�dz

dt
� � �1, �d�2

dt
� � �2, �89�

where ��1 ,�2� user-defined small values. In this study, we use

�1 = 10−6m, �2 = 10−4.

8 Cylinder Drop Experiments
Two cylinder drop experiments were conducted to collect data

for the model evaluation. Exp-1 was designed to collect data on a
cylinder’s motion in the water column for various combinations of
the cylinder’s parameters. Exp-2 was designed to collect synchro-
nized data on sediment parameters �shear strength and density�
and the cylinder’s burial depth and orientation.

8.1 Exp-1. Exp-1 was conducted at the Naval Postgraduate
School swimming pool in June 2001 �16�. It consisted of dropping
each of three model cylinders �Fig. 9� into the water where each
drop was recorded underwater from two viewpoints. The physical
parameters of the model cylinders are listed in Table 2. Figure 10
depicts the overall setup. The controlled parameters for each drop
were L /R ratio, �-value, initial velocity �Vin�, and drop angle. The
E-coordinate system is chosen with the origin at the corner of the
swimming pool with the two sides as x and y axes and the vertical

z axis. The initial injection of cylinders was in the �y ,z� plane
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�Fig. 11�.
Initial velocity �Vin� was calculated by using the voltage return

of an infrared photo detector located at the base of the cylinder
injector. The infrared sensor produced a square wave pulse when
no light was detected due to blockage caused by the cylinder’s
passage. The length of the square wave pulse was converted into
time by using a universal counter. Dividing the cylinder’s length
by the universal counter’s time yielded Vin. The cylinders were
dropped from several positions within the injector mechanism in
order to produce a range of Vin. The method used to determine Vin
required that the infrared light sensor be located above the water’s
surface. This distance was held fixed throughout the experiment at
10 cm.

The drop angle �initial value of �2
�in�� was controlled using the

Fig. 8 Procedure of the recursive model
Fig. 9 Internal components of the model cylinder

Journal of Applied Mechanics
drop angle device. Five screw positions marked the 15 deg, 30
deg, 45 deg, 60 deg, and 75 deg. The drop angles were determined
from the lay of the pool walkway, which was assumed to be par-
allel to the water’s surface. A range of drop angles was chosen to
represent the various entry angles that air- and surface-laid mines
exhibit in naval operation. This range produced velocities whose
horizontal and vertical components varied in magnitude. This al-
lowed for comparison of cylinder trajectory sensitivity with the
varying velocity components.

For each drop the cylinder was set to a � value. For positive �
value, the cylinders were placed into the injector so that the COM
was located below the geometric center. For negative � value, the

Table 2 Physical parameters of the model cylinders

Cylinder
Mass
�g�

L
�cm�

Volume
�cm3�

	m

�g m−3�
J1

�g m2�
�

�cm�
J2�J3�

��g m2�

322.5 15.20 191.01 1.69 330.5 0.00 6087.9
1 0.74 5783.0

1.48 6233.8
2 254.2 12.10 152.05 1.67 271.3 0.06 3424.6

0.53 3206.5
1.00 3312.6

3 215.3 9.12 114.61 1.88 235.0 0.00 1695.2
0.29 1577.5
0.58 1556.8

Fig. 10 Exp-1 equipments
Fig. 11 Top view of Exp-1
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COM was located above the geometric center to release. A series
of drops was then conducted in order of decreasing mine length
for each angle. Table 3 indicates number of drops conducted for
different drop angles and � value for L /R=15/2. The number of
drops for other L /R ratios �12/2 ,9 /2� is comparable to that for
the L /R ratio of 15/2. All together there were 712 drops. Each
video camera had a film time of approximately 1 h. At the end of
the day, the tapes were replayed in order to determine clarity and
optimum camera position.

Upon completion of the drop phase, the video from each cam-
era was converted to digital format. The digital video for each
view was then analyzed frame by frame �30 Hz� in order to de-
termine the mine’s position in x-z and y-z planes. The cylinder’s
top and bottom positions were input into a MATLAB generated
grid, similar to the ones within the pool. The first point to impact
the water was always plotted first. This facilitated tracking of the
initial entry point throughout the water column. The cameras were
not time synchronized; thus, the first recorded position corre-
sponded to when the full length of the mine was in view.

8.2 Exp-2. Exp-2 was conducted on the R/V John Martin on
May 23, 2000 �17�. The barrel with density ratio of 1.8 was re-
leased horizontally while touching the surface. The initial condi-
tions are

Vin = 0, �2
�in� = 90 ° , �90�

This would be to eliminate any chance of inertial effects caused
by uneven introduction into the air-sea interface. This also set the
initial velocity parameter in the code to zero. The barrel was to be
released 17 times. The diver would snap the quick-release shackle
on the barrel and then dive down to conduct measurements. The
average depth of the water was 13 m. Since it was uncertain the
path the barrel would follow, both the releasing diver and a second
safety diver would stay on the surface until after the barrel had
dropped. Once reaching the bottom, one diver would take penetra-
tion measurements using a meter stick marked at millimeter incre-
ments while the other would take a gravity core. After 17 drops,
the divers began to run out of air and results were not varying
greatly so the decision was made to end the experiment. Upon
return to the Monterey Bay Aquarium Research Institute, the grav-
ity cores were taken immediately to the USGS Laboratories in
Menlo Park, CA where they were refrigerated until the analysis
could be performed on May 31–June 1, 2000.

Analysis of the gravity cores was begun on May 31, 2000 at the
USGS Laboratories in Menlo Park, CA. The gravity cores were
sliced into 2 cm segments to a depth of 10 cms, and then sliced
into 4 cm segments. A fall cone apparatus �Model G-200� was
used to determine sediment density 	s�z� and shear strength. In the
test, it is assumed that the shear strength of sediment at constant
penetration of a cone is directly proportional to the weight of the
cone, and the relation between undrained shear strength s and the
penetration h of a cone of weight Q is given by

S�z� = KQ/h2, �91�

where K is a constant which depends mainly on the angle of the
cone, but is also influenced by the sensitivity of the clay/sediment.

Table 3 Number of drops conducted for different drop angles
and � values for L /R=15/2

�2
�in� 15 deg 30 deg 45 deg 60 deg 75 deg

�2
13 15 15 15 12

�1
9 15 15 15 9

�0
12 14 15 18 6

�−1
0 6 6 6 0

�−2
2 6 6 0 0
Four different cones are used with this instrument, each one hav-
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ing the measuring range listed in Table 4. The cones are sus-
pended from a permanent magnet. By pressing a knob, the magnet
is moved so that the magnetic field is broken momentarily and the
cone is released. Measurements are taken of penetration depth and
the evolution is repeated five times per sediment slice. These val-
ues are then averaged and correlated with a table which gives
shear strength. Previous studies �18� showed that the sediment
parameters are the most critical element in determining how deep
an object was buried when it came to rest. During the experiment
at the Monterey Bay, we obtained 17 gravity cores. Sediment bulk
density and shear strength profiles �Fig. 12� generally show in-
crease with depth until approximately 6–9 cm below the water-
sediment interface.

9 Model-Data Comparison
The U.S. Navy has a 2D model in the x-z plane �IMPACT28� to

predict the cylinder’s trajectory and impact burial. Since the mo-
tion of the cylinder is 3D, the impact burial prediction using the
2D model has large errors �19–21�. In this study, a new 3D model
�called IMPACT35� is developed on the base of momentum bal-
ance �19a� and �19b� and moment of momentum balance �20�
using a triple coordinate transform �8� and cylinder decomposi-
tion. To evaluate the value added to the 3D model, comparison
among the observed data �from Exp-1 and Exp-2� and predicted
data using 2D �IMPACT28� and 3D �IMPACT35� models is con-
ducted. Since position and orientation of the cylinder were tape
recorded after it is submerged into the water, the free water sur-
face effect was not detected from Exp-1 and Exp-2.

9.1 Comparison Using Exp-1 Data. Improvement from IM-
PACT28 to IMPACT35 in predicting cylinders’ trajectory and ori-
entation in the water column is verified using the Exp-1 data.
Here, we list two examples.

Positive � (Nose-Down): Cylinder 1 �L=15.20 cm,	
=1.69 g cm−3� with �=0.74 cm is injected to the water with the

Table 4 Measuring ranges of the gravity cores

Weight
�g�

Apex-
angle

Penetration
�mm�

Undrained
shear strength

�kPa�

400 30 deg 4.0–15.0 25–1.8
100 30 deg 5.0–15.0 4–0.45

60 60 deg 5.0–15.0 0.6–0.067
10 60 deg 5.0–20.0 0.10–0.0063

Fig. 12 Mean sediment density 	s„z… and shear strength S„z…
profiles in the Monterey Bay collected during the cylinder drop

experiment on May 31, 2000

Transactions of the ASME



CT
drop angle 45 deg. The physical parameters of this cylinder are
given by

m = 322.5 g, J1 = 330.5 g cm2, J2 = J3 = 5783.0 g cm2.

�92a�
The initial conditions for the numerical models �IMPACT28 and
IMPACT35� are taken the same as the experiment �see Sec. 8�:

x0 = 0, y0 = 0, z0 = 0, u0 = 0, v0 = − 1.55 m s−1,

Fig. 13 Movement of cylinder 1 „L=15.20 cm,
deg obtained from „a… experiment, „b… 3D IMPA

Fig. 14 Movement of cylinder 2 „L=12.10 cm,

30 deg obtained from „a… experiment, „b… 3D IMPA

Journal of Applied Mechanics
w0 = − 2.52 m s−1,

�10 = 0, �20 = 60 ° , �30 = − 95 ° , �10 = 0,

�20 = 0.49 s−1, �30 = 0.29 s−1. �92b�

Substitution of the model parameters �92a� and the initial condi-
tions �92b� into IMPACT28 and IMPACT35 leads to the predic-
tions of the cylinder’s translation and orientation that are com-

1.69 g cm−3
… with �=0.74 m and drop angle 45

35 model, and „c… 2D Impact28 model

1.67 g cm−3
… with �=−1.00 cm and drop angle
	=
	=

CT35 model, and „c… 2D Impact28 model
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pared with the data collected during Exp-1 at time steps �Fig. 13�.
The new 3D model �IMPACT35� simulated trajectory agrees well
with the observed trajectory. Both show the same slant-straight
pattern and the same travel time �1.23 s� for the cylinder passing
through the water column. However, the existing 2D model �IM-
PACT28� has less capability to predict the cylinder’s movement in
the water column. The travel time predicted by IMPACT28 is 1.5
s, much more than the observed value.

Negative � (Nose-Up): Cylinder 2 �L=12.10 cm,	
=1.67 g cm−3� with �=−1.00 cm is injected to the water with the
drop angle 30 deg. The physical parameters of this cylinder are
given by

m = 254.2 g, J1 = 271.3 g cm2, J2 = J3 = 3312.6 g cm2.

�93a�
The initial conditions for the numerical models �IMPACT28 and
IMPACT35� are taken the same as the experiment �see Sec. 8�:

x0 = 0, y0 = 0, z0 = 0, u0 = 0, v0 = − 0.75 m s−1,

w0 = − 0.67 m s−1,

�10 = 0, �20 = 24 ° , �30 = − 96 ° , �10 = 0,

�20 = − 5.08 s−1, �30 = 0.15 s−1. �93b�
The predicted cylinder’s translation and orientation are compared
with the data collected during Exp-1 at time steps �Fig. 14�. The
new 3D model �IMPACT35� simulated trajectory agrees well with
the observed trajectory. Both show the same flip-spiral pattern and
the same travel time �1.73 s� for the cylinder passing through the
water column. The flip occurs at 0.11 s �0.13 s� after the cylinder
enters the water in the experiment �IMPACT35�. After the flip, the
cylinder spirals down to the bottom. However, the existing 2D
model �IMPACT28� does not predict the flip-spiral pattern.

9.2 Comparison Using Exp-2 Data. After running the two
models �IMPACT35 and IMPACT28� for each gravity core re-
gime �	s�z� ,S�z�� from the initial conditions �90�, the burial
depths were compared with measured burial depth data �Fig. 15�.
As evident, IMPACT35 improves the prediction capability. The
existing 2D model �IMPACT25� overpredicts actual burial depth
by an order of magnitude on average. However, the 3D model
�IMPACT35� predicts the burial depth reasonably well without
evident overprediction. Since the gravity cores were taken for
approximately 2 to 3 m from the impact location, several cores
were taken for each drop. This allowed an average to be calcu-
lated in order to yield more accurate data for each drop.

10 Conclusions

1. A 3D model �IMPACT35� is developed to predict the trans-
lation and orientation of a falling rigid cylinder through air,
water, and sediment. It contains three components: triple co-
ordinate transform, cylinder decomposition, and hydrody-
namics of a falling rigid object in a single medium �air,
water, or sediment� and in multiple media �air-water and
water-sediment interfaces�.

2. Triple coordinate transform is useful for modeling the move-
ment of a rigid body in air-water-sediment. The body forces
�including buoyancy force� and torques are represented in
the E-coordinate system, the hydrodynamic forces �such as
the drag and lift forces� and torques are represented in the
F-coordinate, and the cylinder’s moments of gyration are
represented in the M-coordinate. The momentum �moment
of momentum� equation for predicting the cylinder’s trans-
lation velocity �orientation� is represented in the
E-coordinate �M-coordinate� system. Transformations
among the three coordinate systems are used to convert the
forcing terms into E-coordinate �M-coordinate� for the mo-

mentum �moment of momentum� equation.
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3. During the penetration, the part that contacts the fluid �air or
water� is treated as an equivalent cylinder with the same
mass and PCOV location. The buoyancy and hydrodynamic
forces and torques are computed in the equivalent cylinder.
The procedure developed for calculating external forcing
�buoyancy and hydrodynamic forces and torques� for a
single cylinder is used for the equivalent cylinder.

4. Impact force and torque below the water-sediment interface
are calculated on the basis of the fact that at the instance of
penetration, the sediment exerts an impact force only on the
portion of the cylinder’s surface, which moves towards the
sediment. The normal and tangential components of the im-
pact force are calculated separately. The normal component
is calculated using the sediment density and shear strength
profiles. The tangential component is computed using the
friction law between two solid bodies �i.e., proportional to
the normal component�. The torque is easily obtained after
the impact force is determined.

5. The dynamic system for predicting trajectory and orientation
of a rigid cylinder in air, water, and sediment are highly
nonlinear. For example, the apparent torque in the moment
of momentum equation �20� �represented in the
F-coordinate� is nonlinear. The drag and lift forces are non-
linear terms which depend on the square of the fluid-to-body
velocity. Two major assumptions are used to simplify the

Fig. 15 Comparison among observed and predicted burial
depths
system. First, the apparent torque is neglected. Second, for
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the given time step tn, the nonlinear drag and lift forces and
torques are linearized at any time instance with temporally
varying coefficients �also dependent on the fluid-to-cylinder
velocity� evaluated at the previous time step, tn−1. With the
given cylinder’s parameters �translation, velocity,
orientation, and angular velocity� at the time
step tn, �x�tn� ,y�tn� ,z�tn� ;u�tn� ,v�tn� ,w�tn� ;�1�tn� ,�2�tn� ,
�3�tn� ,�1�tn� ,�2�tn� ,�3�tn��, the model has analytical solu-
tions at the time step tn+1. The recursive procedure is estab-
lished to predict the cylinder’s translation, velocity, orienta-
tion, and angular velocity through air, water, and sediment
from the initial conditions. The strength of such treatments
guarantees the convergence of the model integration.

Since neglect of the apparent torque is feasible only for
slow rotation around the cylinder’s main axis �i.e., small
self-spin angular velocity �1�, and since local linearizations
of drag and lift forces and torques are feasible for relatively
small fluid-to-cylinder velocity, the model might not be valid
if �1 or the fluid-to-cylinder velocity is large such as for fast
water entry and fast self spinning. A fully numerical calcu-
lation �rather than the recursive procedure� should be devel-
oped for the prediction.

6. Two cylinder drop experiments were conducted to evaluate
the 3D model. Model-data comparison shows that IM-
PACT35 improves the prediction capability drastically with
an order of error reduction in the cylinder burial depth, more
accurate cylinder track �depth and orientation� prediction,
and more accurate travel time of the cylinder through
air-water-sediment.
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Nomenclature
B � length of the sediment rupture line

�Cd1 ,Cd2� � drag coefficients along and across the
cylinder

Cl � lift coefficient
Ctl � translational lift coefficient, kg s−1

d � cylinder diameter, m
ev � void ratio

�f1 , f2 , f3� � added-mass ratios for drag and lift forces
f r � added-mass ratio for moment of drag and

lift forces
�frd2 , frd3� � rotational drag force, N

Fb � buoyancy force, N
Fd � drag force, N

�Fd1 ,Fd2 ,Fd3� � drag force in the F-coordinate, N
Fl � lift force, N

�Fl1 ,Fl2 ,Fl3� � lift force in the F-coordinate, N
Fpw � pore water pressure force, N

�iE , jE ,kE� � unit vectors in the E-coordinate
�iF , jF ,kF� � unit vectors in the F-coordinate

�iM, jM,kM� � unit vectors in the M-coordinate
�J1 ,J2 ,J3� � moments of gyration, kg m2

�J1
�i� ,J2

�i� ,J3
�i�� � moments of gyration for cylindrical part i,

kg m2

kp � permeability coefficient, m s−1

L � length of the cylinder, m
�l1 , l2 , l3� � lengths of the cylindrical Parts, m

�m1 ,¼ ,m6� � masses of cylindrical parts, kg
Mb � torque due to the buoyancy force,

2 −2
kg m s

Journal of Applied Mechanics
Mh � torque due to the hydrodynamic force,
kg m2 s−2

�Md1 ,Md2 ,Md3� � torques due to the drag force in the
M-coordinate, kg m2 s−2

r � position vector �in the M-coordinate� of
point on the cylinder’s surface

rpw � position vector �in the M-coordinate� indi-
cating the location of the cylinder’s rupture
line

R � radius of the cylinder
�R1 ,R2 ,R3� � radii of cylindrical parts, m

Re � Reynolds number
V � translation velocity, m s−1

Vr � water-to-cylinder velocity, m s−1

V1 � component of Vr along the cylinder, m s−1

V2 � component of Vr perpendicular to the cylin-
der, m s−1

Vw � water velocity �m s−1�
V�in� � initial speed of dropping cylinder, m s−1

� � molecular viscosity of the water, m2s−1


 � volume of the cylinder, m3

	 � density of the cylinder kg m−3

	w � density of the water, kg m−3

� � distance between COM and COV, m
��1 ,�2 ,�3� � angles determining the cylinders’

orientation
� � angular velocity, s−1

��1 ,�2 ,�3� � angular velocity components in the
M-coordinate, s−1

��1
F ,�2

F ,�3
F� � angular velocity components in the

F-coordinate, s−1
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Coupling of Extension and Twist
in Single-Walled Carbon
Nanotubes
This paper presents a study of the deformation behavior of single-walled carbon nano-
tubes (SWNTs) subjected to extension and twist. The interatomic force description is
provided by the Tersoff-Brenner potential for carbon. The rolling of a flat graphene sheet
into a SWNT is first simulated by minimizing the energy per atom, the end result being the
configuration of an undeformed SWNT. The Cauchy-Born rule is then used to connect the
atomistic and continuum descriptions of the deformation of SWNTs, and leads to a mul-
tilength scale mechanics framework for simulating deformation of SWNTs under applied
loads. Coupled extension and twist of SWNTs is considered next. As an alternative to the
Cauchy-Born rule for coupled extension-twist problems, a direct map is formulated.
Analytic expressions are derived for the deformed bond lengths using the Cauchy-Born
rule and the direct map for this class of deformations. Numerical results are presented for
kinematic coupling, for imposed extension and imposed twist problems, using the
Cauchy-Born rule as well as the direct map, for representative chiral, armchair and
zig-zag SWNTs. Results from both these approaches are carefully compared.
�DOI: 10.1115/1.2125987�
1 Introduction
Carbon nanotubes �CNTs� are extremely thin, hollow cylinders

made of carbon atoms. They are very strong, very stiff materials
and have good thermal conductivity. Depending on their structural
arrangement, CNTs exhibit either conducting or semiconducting
electrical behavior. These intriguing properties of CNTs have
aroused a strong interest in their possible use in nanoelectro me-
chanical devices such as nanowires, or as active components in
electronic devices such as field-effect transistors.

Some of the remarkable electrical and mechanical properties of
CNTs stem from the close relation between carbon nanotubes and
graphite. An ideal nanotube can be considered as a hexagonal
network of carbon atoms that has been rolled up to make a seam-
less hollow cylinder �Fig. 1�a��. Single-walled carbon nanotubes
�SWNTs� are the fundamental structural units that form the build-
ing blocks of multiwalled nanotubes, nanotube ropes and rings.
Examples of three kinds of SWNTs: chiral, armchair, and zig-zag,
are shown in Figs. 1�b�–1�d�. It is seen that the chiral SWNT has
an asymmetry �its atoms lie on helices� which causes it to twist
when extended and vice versa. The other two have nominally
symmetric structures and do not twist when extended. Kinematic
coupling analysis �for extension-twist problems� is carried out in
this work in order to understand these phenomena. To the best of
the authors’ knowledge, this is the first time that such results have
been presented for carbon nanotubes.

Deformation analysis of CNTs has been the subject of various
studies undertaken to enhance the understanding of their mechani-
cal behavior. Experiments at the nanoscale are still under devel-
opment, and thus have resulted in a significant spread in the re-
ported values for various mechanical properties �e.g., extensional
stiffness� measured experimentally by employing various kinds of
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microscopy and other techniques �see, e.g., Refs. �2–11��. Natural
frequencies of vibrating carbon nanotubes have been measured
recently �12�. Atomistic simulations �e.g., �13–28�� have been ef-
fective in deformation analyses, but their computational expense
limits the size of CNTs that can be studied. Examples of other
recent papers that address mechanical properties of nanotubes are
�29,30�. In spite of the robustness and economy of continuum
mechanics, standard constitutive models cannot be directly ap-
plied to CNTs due to their small size, dominant presence of van
der Waals forces, and ambiguities associated with the values of
elastic moduli and CNT wall thickness. Hence, there is a great
need to develop enriched continuum models that include atomistic
effects, yet use a continuum framework, thus making reasonably
sized calculations tractable.

The present work deals with a nonlinear atomistic-continuum
constitutive framework that closely follows the constitutive model
developed by Zhang et al. �31� and Jiang et al. �32� �see, also, Liu
et al. �33�, Tadmor et al. �36��. This approach makes use of the
Tersoff-Brenner �34,35� multibody interatomic potential for car-
bon, and can be outlined as follows: First, the equilibrium posi-
tions of the atoms on a nanotube prior to deformation are obtained
by establishing a correspondence between a flat sheet of graphene
and a rolled-up tube. The positions of the atoms upon imposing a
deformation on the CNT can then be found by adopting a modi-
fied Cauchy-Born rule �36�. The elasticity tensor �in the context of
a hyperelastic continuum analysis� is obtained using an appropri-
ate definition of the strain energy density, taken to be a function of
the Lagrangian strain. Next, a particular class of deformation
problems—imposed extension with allowable twist; and imposed
twist with allowable extension, is considered in this work. It is
also possible to use a direct map �instead of the Cauchy-Born
rule� for this class of extension-twist problems. Analytic expres-
sions are derived for the deformed bond lengths using the Cauchy-
Born rule and the direct map for these deformations. Numerical
results for kinematic coupling �e.g., variation of nanotube radius
and angle of twist as functions of axial strain�, using the Cauchy-
Born rule as well as the direct map, for each of two reported
parameter sets for the Tersoff-Brenner potential, are obtained and
studied. Future plans call for determination of elastic moduli, and
stress-strain plots for these extension-twist problems—these re-

sults will be compared with those reported in the literature
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�31,32�. This work will set the stage for the use of this constitutive
model to study the deformation behavior of CNTs under more
complex loading conditions.

As mentioned before, the present work follows the excellent
research presented in �31–33�. Certain features of the present
work, that are different from that reported earlier, are pointed out
below.

• The present work clearly follows a two-step process. The
rolling of a flat sheet of graphene into a single-walled CNT
�SWNT� is first simulated by following the movement of a
representative carbon atom and its nearest neighbors, that
start out on a flat graphene sheet and move to their new
positions on the CNT. Their new positions are found by
minimizing the energy per atom. These atoms are then al-
lowed to move �shift� at the onset of deformation, and do so,
thereby relaxing to a lower energy state. Next, suitable de-
formation �extension or twist� is applied to the CNT. Thus,
the CNT configuration �both undeformed and deformed�, in
this work, is cylindrical, while �32� �p. 435� carries out map-
ping of the cylindrical CNT onto a planar sheet—both ini-
tially and during deformation. An energy minimization ap-
proach to obtain the cylindrical coordinates of the atoms has
been adopted in previous work �e.g., �32��, as well as in the
present work.

• A direct map, which is an alternative to the use of the
Cauchy-Born rule for this problem, is presented here in ad-
dition to the use of the rule. Use of the direct map over-
comes certain deficiencies in direct application of the
Cauchy-Born rule to a CNT.

• Another important aspect of this work is an a posteriori
check on the assumed, analytically convenient, simplified
version of the Tersoff-Brenner potential that has been em-
ployed here as well as in previous work reported in Refs.
�31–33�.

The present paper is organized as follows. The Tersoff-Brenner
�34,35� interatomic potential for carbon is briefly reviewed first,
followed by a discussion of the simulation of rolling of a flat
graphene sheet into a SWNT. Next, an enriched continuum me-

Fig. 1 „a… Rolling of a graphene sheet into a SWNT. Single
walled carbon nanotubes drawn on the same scale: „b… Chiral
„9,6…; „c… Armchair „5,5… „d… Zig-zag „10,0…. The figures „b–d…
have been drawn by using the software in †1‡
chanics model for the deformation of a SWNT is presented. The
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noncentrosymmetric structure of graphite is accounted for in this
model by introducing the shift vector �36,31�. Simulation of the
mechanical behavior of a SWNT under applied extension and ap-
plied twist follows. This is carried out for two cases: the Cauchy-
Born rule as well as the direct map; and for both sets of param-
eters of the Tersoff-Brenner potential. Numerical results, a
discussion of the results, and concluding remarks, complete the
paper.

2 Constitutive Model for Nonlinear Deformation of
Single-Walled Carbon Nanotubes

2.1 Interatomic Potential for Carbon. Expressions for the
Tersoff-Brenner potential �35� for carbon are given below. It is
noted that a “simplified” version of the Tersoff-Brenner potential
is used here—the same model as has been employed in Refs.
�31–33�. �Please see Sec. 3.3 for more details.�

Following Brenner �35�, an expression for the bonding energy
between atoms i and j for carbon is

V�r�i, j�� = VR�r�i, j�� − B̄�i, j�VA�r�i, j�� �1�

where r�i , j� is the bond length �i.e., the distance between carbon
atoms i and j at the two ends of the bond�, VR and VA are the
repulsive and attractive pair terms given as:

VR�r� =
D�e�

S − 1
exp�− �2S��r − R�e���fc�r� �2�

VA�r� =
D�e�S

S − 1
exp�− �2/S��r − R�e���fc�r� �3�

where the parameters D�e� ,S ,�, and R�e� �a parameter that is fit to
the lattice constant of diamond and graphite� are given in Table 1.
The function fc is a smooth cut-off function that limits the range
of the potential. This is given as:

fc�r� = �
1 r � R�1�

�1/2��1 + cos���r − R�1��
R�2� − R�1� 	
 R�1� � r � R�2�

0 r � R�2�
� �4�

where R�1� and R�2� are cut-off distances that are available in Table
1.

The parameter B̄�i , j�= �1/2��B�i , j�+B�j , i�� in �1� represents a
multibody coupling between the bond from atom i to atom j, and
the local environment of atom i. This has the form:

B�i, j� = �1 + �
k�i,j

G���i, j,k��fc�r�i,k��	−�
�5�

where � is a parameter, k denotes other carbon atoms besides i and

Table 1 Two sets of Tersoff-Brenner parameters for carbon

Parameter Value �set 1� Value �set 2�

D�e� 6.325 eV 6.00 eV
S 1.29 1.22
� 15 nm−1 21 nm−1

R�e� 0.1315 nm 0.1390 nm

R�1� 0.17 nm 0.17 nm

R�2� 0.20 nm 0.20 nm
� 0.80469 0.5
a0

0.011304 0.00020813
c0

2 192 3302

d0
2 2.52 3.52
j ,��i , j ,k� is the angle between the bonds i− j and i−k, and
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G��� = a0�1 +
c0

2

d0
2 −

c0
2

d0
2 + �1 + cos ��2	 �6�

with, as before, the parameters a0 ,c0 ,d0 ,� given in Table 1.
Brenner �35� gives two sets of values of the parameters

D�e� ,S ,� and R�e� in �2� and �3�, � in �5� and a0 ,c0 ,d0 in �6� for
carbon. The first set is a good fit �with experiments� for the bond
lengths, while the second fits the stretching force constants well.
The values of these parameters, as well as those of R�1� ,R�2� in �4�,
are given in Table 1.

2.2 Mapping of a Flat Graphene Sheet Into a SWNT. This
section closely follows the discussion in �32�. A representative
carbon atom A, and its nearest neighbors B ,C ,D on a flat
graphene sheet, are shown in Fig. 2. The vectors ak ,k=1, 2, 3, 4,
5, shown in the figure, have lengths ak. The length of the vector

AD�, as well as the angles �1 and �2 in Fig. 2, can be easily
obtained as functions of ak ,k=1, 2, 3, 4, 5, from the geometry of
this figure. In this work, the values of ak ,k=1, 2, 3, 4, 5, are
obtained from an optimization process that minimizes the poten-
tial energy per atom in a SWNT. This matter is discussed in Sec.
2.3.

The graphene sheet is rolled into a cylinder whose circumfer-
ential vector is the chiral vector �. Its length is the circumference
of the SWNT, so that the diameter of the SWNT is d=	 /�, where
	= �. The translational vector � is also denoted in Fig. 2. Its
magnitude equals the axial period of the CNT. By usual conven-
tion,

� = na1 + ma2 �7�

where n and m are integers �n
 m
0� and �n ,m� is the chirality
of the CNT; �n ,0� is called zig-zag, �n ,n� is called armchair and
the general case n� m�0 is called a chiral CNT �Fig. 1�. Refer-
ring to Fig. 2, one can easily show that:

	 = �n2a1
2 + m2a2

2 + nm�a1
2 + a2

2 − a3
2�, � = cos−1�� · a1

	a1
� �8�

Now consider the mapped positions, in polar coordinates, of the
points A ,C ,D in Fig. 2, in the rolled SWNT. With B as the refer-
ence point, one gets

R�A� = R�B� = R�C� = R�D� = d/2

Z�A� = a4 sin��2 + ��, Z�B� = 0, Z�C� = a1 sin��� ,

Z�D� = a3 sin��1 + �2 + ��

��A� =
2a4 cos��2 + ��

d
, ��B� = 0, �9�

��C� =
2a1 cos���

, ��D� =
2a3 cos��1 + �2 + ��

Fig. 2 A representative atom A and its nearest neighbors
B ,C ,D and bonds AB ,AC ,AD. a1=BC� and a2=DC�
d d
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Finally, let r�0��X ,Y� denote the Euclidean distance �which is
also the bond length when X and Y are nearest neighbors� between
two atoms X and Y�X ,Y =A ,B ,C ,D� when X ,Y are located on the
surface of the SWNT. One has

r�0��X,Y� =�d2

2
�1 − cos���Y� − ��X��� + �Z�Y� − Z�X��2

�10�

The angle � in �6� is obtained from r�0��X ,Y� by using the
cosine rule.

Given m and n, and the parameters in the Tersoff-Brenner po-
tential; the bond lengths r�0��X ,Y�, and the energy per atom �V�
associated with atom A �half of the energy from each bond is
counted as the energy for atom A�:

V = �1/2��V�r�A,B�� + V�r�A,C�� + V�r�A,D��� �11�

are now known as functions of ak ,k=1, 2, 3, 4, 5. The next step is
to minimize the energy for atom A. Therefore, one has

�V

�ak
= 0, k = 1,2,3,4,5 �12�

Implementation of Eq. �5�, for the atoms B ,C ,D in Fig. 2 re-
quires special care. In this case, nearest neighbors X1 ,X2 of X,
where atom X represents B ,C ,D �see Fig. 3�, must be included as
well. The equations needed for including these interactions are
listed in Tables 2–5. These equations are motivated by the need to
enforce appropriate periodicity conditions. Those in Tables 3 and
4 are correct on a nanotube. Those in Table 2 are correct on a flat
graphene sheet and are approximations on a nanotube. Those in
Table 5 are assumptions. Equation �5� is implemented in this man-

Fig. 3 Atomic structure for „a… armchair r„0…„A ,B…

=r„0…„A ,D… ,r„0…„C ,B…=r„0…„C ,D… „b… zig-zag r„0…„A ,B…=r„0…„A ,C… ,
r„0…„D ,B…=r„0…„D ,C… The figures show nearest neighbors B ,C ,D
of atom A, and the nearest neighbors of B ,C ,D

Table 2 Relationships between angles for all SWNTs „see Fig.
3…

��B ,C ,B1�=��B ,A ,B1�+��B ,A ,C�
��B ,C ,B2�=��B ,A ,B2�−��B ,A ,C�
��B ,D ,B1�=��B ,A ,B1�−��B ,A ,D�
��B ,D ,B2�=��B ,A ,B2�+��B ,A ,D�
��C ,B ,C1�=��C ,A ,C1�−��C ,A ,B�
��C ,B ,C2�=��C ,A ,C2�+��C ,A ,B�
��C ,D ,C1�=��C ,A ,C1�+��C ,A ,D�
��C ,D ,C2�=��C ,A ,C2�−��C ,A ,D�
��D ,B ,D1�=��D ,A ,D1�+��D ,A ,B�
��D ,B ,D2�=��D ,A ,D2�−��D ,A ,B�
��D ,C ,D1�=��D ,A ,D1�−��D ,A ,C�
��D ,C ,D2�=��D ,A ,D2�+��D ,A ,C�
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ner for simulation of rolling of a graphene sheet into a SWNT, as
well as for simulation of deformation of SWNTs under imposed
extension or twist.

2.3 Numerical Results for Bond Lengths in an Unde-
formed SWNT. Equation �12� is solved for the parameters ak ,k
=1, 2, 3, 4, 5, with MATLAB using the subroutine fminunc. This
is a Quasi-Newton algorithm. In this function, the BFGS method
�37–40� is used for choosing the search direction �by updating the
Hessian matrix� and a cubic polynomial interpolation �cubicpoly�
is used, together with gradient and function evaluations, to obtain
estimates of step length in a chosen direction. This subroutine
fminunc is used for all the minimization calculations in the rest of
this paper.

The problem is solved for examples of a chiral �9,6�, armchair
�5,5�, and zig-zag �10,0� CNT. A sample starting guess, based on
an initial equilateral triangle BCD in Fig. 2, is given in Table 6.
Please note that R�e�, a parameter that is fit to the lattice constant
of diamond and graphite, has values of R�e�=0.1315 nm for pa-
rameter set #1 and R�e�=0.1390 nm for parameter set #2 �see
Table 1�. The starting guesses for a4 and a5 in Table 6 are chosen
to be equal to the corresponding values of R�e� for the two param-
eter sets. The corresponding values of the energy per atom, for the
three kinds of nanotubes mentioned above, appear in Table 7.

Various starting guesses were tried and the best converged val-
ues for ak ,k=1, 2, 3, 4, 5, for the two sets of parameters, are given
in Tables 8 and 9, respectively. The values of the ak are very
important because these are used to calculate the polar coordinates
of the atoms A ,B ,C ,D in the SWNT �from Eqs. �7�–�9��; and
these polar coordinates are inputs for simulations of deformations
of the various SWNTs.

It is noted that the values of a4 and a5 in Tables 8 and 9 lie
between the lengths of single and double carbon-carbon bonds as

Table 3 Relationships between bond lengths and angles for
zig-zag SWNTs †see Fig. 3„b…‡

r�B ,B1�=r�C ,C2�=r�D ,D1�=r�D ,D2�= �1/2��r�A ,B�+r�A ,C��
r�B ,B2�=r�C ,C1�=r�A ,D�
��B ,A ,B1�=��C ,A ,C2�=��A ,B ,C�
��B ,A ,B2�=��C ,A ,C1�=��D ,A ,D1�=��D ,A ,D2�= �1/2����A ,B ,D�
+��A ,C ,D��

Table 4 Relationships between bond lengths and angles for
armchair SWNTs †see Fig. 3„a…‡

r�B ,B2�=r�C ,C1�=r�C ,C2�=r�D ,D1�= �1/2��r�A ,B�+r�A ,D��
r�B ,B1�=r�D ,D2�=r�A ,C�
��B ,A ,B2�=��D ,A ,D1�=��A ,B ,D�
��B ,A ,B1�=��C ,A ,C1�=��C ,A ,C2�=��D ,A ,D2�= �1/2����A ,B ,C�
+��A ,C ,D��

Table 5 Relationships between bond lengths and angles for
chiral SWNTs „see Fig. 3…

r�X ,X1�=r�X ,X2�= �1/3��r�A ,B�+r�A ,C�+r�A ,D��
��X ,A ,X1�=��X ,A ,X2�= �1/3����A ,B ,C�+��A ,B ,D�+��A ,C ,D��
for X=B,C,D

Table 6 Sample starting values for ak ,k=1,
initial equilateral triangle BCD „see Fig. 2… on

Parameter set a1 �nm� a2 �nm�

1 0.2278 0.2278
2 0.2408 0.2408
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reported in Table 2 of �35�. This is consistent with the fact that
graphene has a resonant bond structure with each of its bonds
being “between single and double.”

Various other quantities are now calculated from ak. The corre-
sponding values of the bond lengths rXY

�0�, in the SWNT, are given
in Tables 10 and 11. The values of the energy/atom V, in each
case, are also given in these tables. It is noted that the bond
lengths are close to the values reported in �32,33,35�. Also, the
energy values are close to the binding energy for graphite
�−7.3768 eV/atom for parameter set 1 and −7.3756 eV/atom for
parameter set 2� as reported in �35�. Finally, the values of the
SWNT radius R, and the angle � in Fig. 2, for the two sets of
parameters, appear in Tables 12 and 13, respectively. It is noted
that the corresponding values, for the two sets of parameters, are
quite close to each other.

2.4 Nonlinear Elastic Deformation of SWNTs. The starting
point here is the undeformed SWNT with the atom positions de-
scribed above. The deformation gradient F=�x /�X, where X and
x denote the positions of a material point in the undeformed and
deformed configurations, respectively. The Cauchy-Born rule has
been applied to Bravais lattices in �36� and has been used to
connect the atomistic and continuum descriptions of a SWNT in
�31–33�. It states that the vector defined by a pair of atoms de-
forms according to the local deformation gradient. Thus, one has

r�i, j� = F · r�0��i, j� �13�

where r�i , j�=r�i , j�n�i , j� with r�i , j� denoting the bond length
between atoms i and j, and n�i , j� a unit vector along the bond
�directed from atom i to atom j�, respectively. A superscript �0�
denotes the undeformed, and its absence, the deformed
configuration.

One can easily show that

r2�i, j� = r�0��i, j� · �I + 2E� · r�0��i, j� �14�

where the Lagrange strain E= �1/2��FT ·F−I� with I the second
order identity tensor, and FT is the transpose of F.

A centrosymmetric lattice is one that has pairs of bonds in
opposite directions around each atom. The Cauchy-Born rule en-
sures equilibrium for such a structure for arbitrary imposed homo-
geneous deformation. A SWNT, however, is not centrosymmetric,
but consists of two different sublattices, each of which is cen-
trosymmetric. A shift vector  becomes necessary �when using the
Cauchy-Born rule� for a SWNT to relate an atom pair when each
of the atoms in the pair lies on different sublattices �see, e.g.,
�31–33,36��.

Atom A in Fig. 2 lies on one sublattice and B ,C ,D lie on
another. Also, define �=F ·�. Now, one has the modified Cauchy-
Born rule as follows:

r�X,Y� = F · r�0��X,Y� + � = F · �r�0��X,Y� + �� �15�

3, 4, 5, for two parameter sets, based on an
graphene sheet

a3 �nm� a4 �nm� a5 �nm�

0.2278 0.1315 0.1315
0.2408 0.1390 0.1390

Table 7 Energy per atom for the starting guesses in Table 6

Type of SWNT V �eV� for set 1 V �eV� for set 2

�9, 6� Chiral −7.1174 −7.1849
�5, 5� Armchair −7.0531 −7.1111
�10, 0� Zig-zag −7.0809 −7.1431
2,
the
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r2�X,Y� = �r�0��X,Y� + �� · �I + 2E� · �r�0��X,Y� + �� �16�

when either of atoms X or Y is A; and �=0 otherwise. It is noted
from above that a deformed bond length r, in general, is a func-
tion of E and �. Strictly speaking, the standard Cauchy-Born rule
is valid only for homogeneous deformations at the atomic scale,
i.e., when F is not a function of position. Such is not the case in
the problems considered later in this paper in which F is a func-
tion of the cylindrical coordinates. In the present work, Eq. �13� is
implemented by evaluating F at atom i, although the reported
results with the Cauchy-Born rule have been verified to remain
unchanged even if F is evaluated at atom j. Further, F maps the
tangent spaces of the undeformed and deformed surfaces at each
corresponding point �see �41��. As pointed out in �41�, �13� im-
plies an approximation of a tangent vector by a chord vector, and
is one of the shortcomings of applying the standard Cauchy-Born
rule to a nanotube. Use of a modification like the exponential map
�41� is currently underway �42�.

2.5 Strain Energy Density in Terms of Interatomic
Potentials. The strain energy density W �in a continuum sense�
must be related to the interatomic potentials for a SWNT. This
relationship is

W�E,��E�� =
V�r�A,B�� + V�r�A,C�� + V�r�A,D��

2�
�17�

where � is the area of the triangle BCD in the flat graphene sheet
in Fig. 2. �This area is assumed to be preserved in the rolled
SWNT.�

It is important to point out that, due to the uncertainty �in the
literature� in the value of the thickness t of a SWNT �because this
thickness is of atomic dimension�, its explicit use is avoided in
this work. The strain energy density W in �17�, therefore, is de-
fined per unit area �rather than per unit volume�. A consequence of

Table 8 Optimal values of ak ,k

Type of SWNT a1 �nm� a2 �nm�

�9, 6� Chiral 0.2464 0.2462
�5, 5� Armchair 0.2476 0.2476
�10, 0� Zig-zag 0.2484 0.2462

Table 9 Optimal values of ak ,k

Type of SWNT a1 �nm� a2 �nm�

�9, 6� Chiral 0.2518 0.2516
�5, 5� Armchair 0.2529 0.2529
�10, 0� Zig-zag 0.2538 0.2515

Table 10 Undeformed SWNT bond lengths an
values of ak, for parameter set 1

Type of SWNT rAB
�0� �nm� rAC

�0� �nm� rAD
�0� �n

�9, 6� Chiral 0.1421 0.1423 0.142
�5, 5� Armchair 0.1422 0.1427 0.142
�10, 0� Zig-zag 0.1424 0.1424 0.142

Table 11 Undeformed SWNT bond lengths an
values of ak, for parameter set 2

Type of SWNT rAB
�0� �nm� rAC

�0� �nm� rAD
�0� �n

�9, 6� Chiral 0.1452 0.1453 0.145
�5, 5� Armchair 0.1453 0.1457 0.145
�10, 0� Zig-zag 0.1454 0.1454 0.145
Journal of Applied Mechanics
this choice is that the stress and elastic modulus tensors T and C,
defined below in �18� and �19�, are actually stress � thickness and
modulus � thickness, respectively.

Equation �17� can be understood by referring to Fig. 4. In view
of the two atom basis for graphene, its entire structure can be
generated by replicating the parallelogram in Fig. 4. Such a cell
includes one full and four half bonds, so that, if the bonding
energy of each atom pair equals V, one gets W=3V /2� ;2� being
the area of the parallelogram �43�. It is important to mention here
that the dependence of W on F must satisfy material frame indif-
ference. W�C� �where C=FT ·F� is both necessary and sufficient
for satisfaction of this requirement.

2.6 Stress and Elastic Moduli. The PKII stress tensor T is
obtained by differentiating the strain energy density W with re-
spect to the Lagrange strain E as follows:

T =
dW

dE
=

�W

�E
+

�W

��

d�

dE
=

�W

�E
�18�

since the shift vector is chosen such that �W /��=0.
For this problem, the elasticity tensor C at the onset of defor-

mation has the form �32�:

C = �dT

dE
�

E=0
= � �2W

�E � E
−

�2W

�E � �
· � �2W

�� � �
	−1

·
�2W

�� � E
	

E=0

�19�

It is noted in the above definition that C= dT /dEE=0 is only
true when the reference configuration is stress free.

3 A SWNT Under Tension and Torsion
The deformation of a SWNT under tension and torsion is dis-

cussed in this section.

, 2, 3, 4, 5, for parameter set 1

a3 �nm� a4 �nm� a5 �nm�

0.2469 0.1422 0.1427
0.2468 0.1423 0.1437
0.2462 0.1428 0.1428

, 2, 3, 4, 5, for parameter set 2

a3 �nm� a4 �nm� a5 �nm�

0.2522 0.1453 0.1458
0.2520 0.1454 0.1468
0.2515 0.1459 0.1459

nergy/atom values, obtained from the optimal

rBC
�0� �nm� rCD

�0� �nm� rDB
�0� �nm� V �eV�

0.2447 0.2452 0.2469 −7.3425
0.2445 0.2445 0.2468 −7.2982
0.2443 0.2460 0.2460 −7.3174

nergy/atom values, obtained from the optimal

rBC
�0� �nm� rCD

�0� �nm� rDB
�0� �nm� V �eV�

0.2500 0.2506 0.2522 −7.3359
0.2498 0.2498 0.2520 −7.2844
0.2496 0.2513 0.2513 −7.3067
=1
=1
d e

m�

1
2
1

d e

m�

2
3
2
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3.1 Basic Equations. The deformation gradient evaluated at
atom i ,F�i�, for this problem has the form �44�2

F�i� =
r

R
�erieRi + e�ie�i� + kre�ieZi + �1 + ��ezieZi �20�

where the undeformed and deformed cylindrical coordinates of
atom i are �R ,��i� ,Z�i�� and �r ,��i� ,z�i��, respectively, with cor-
responding base vectors �eRi ,e�i ,eZi� and �eri ,e�i ,ezi�. Therefore,
R and r are the undeformed and deformed �here mean� radii of the
nanotube. Also, with k the twist per unit undeformed length and �
the axial strain, one has �please note that k and � are defined with
respect to the unrelaxed �i.e., �=0� undeformed tube�:

��i� = ��i� + kZ�i�,z�i� = �1 + ��Z�i�

eRi = eR cos���i�� + e� sin���i�� ,

e�i = − eR sin���i�� + e� cos���i��, eZi = eZ

eri = eRi cos�kZ�i�� + e�i sin�kZ�i�� , �21�

e�i = − eRi sin�kZ�i�� + e�i cos�kZ�i��, ezi = eZi

where �eR ,e� ,eZ� are the base vectors corresponding to the refer-
ence atom �here atom B, with ��B�=0�.

Since only the mean radius is of interest in this work, one can
use a linear relationship r=�R �where � is spatially independent�,
so that one has dr /dR=r /R. This assumption is made above to get
�20�, and also in �44� even though the tube of interest there does
not necessarily have a very thin wall.

Use of the assumption dr /dR=r /R can also be motivated as
follows. Consider a thin-walled circular cylinder, made of a lin-
early elastic isotropic material, under pure axial tension. Now, one
has �in usual notation�:

du

dR
= �rr = − ��/E��zz = ��� =

u

R
�22�

Since r=R+u ,dr /dR=r /R follows from �22�.
The corresponding expression for the Lagrangian strain tensor

evaluated at atom i is

E�i� =
1

2
� r2

R2 − 1��eRieRi + e�ie�i� +
kr2

2R
�e�ieZi + eZie�i�

+
1

2
�k2r2 + 2� + �2�eZieZi �23�

It is useful, at this stage, to consider W as a function of
�r ,k ,� ,��. It is felt that this point of view is useful for a clear
presentation of the rest of this section. The stationary potential
energy principle is implemented by minimizing the total internal
energy �body forces and nonbonded interactions are neglected in
the present work� over the referential domain. Accordingly, the
strain energy density must be minimized with respect to the vari-
ables r and �. Therefore, one must have

2It is noted that the term �r /R�erieRi is missing in Eq. �38� of �32� and in Eqs. �25�,
�29� of �33�. This is because 2 D deformation is considered in these papers while a
cylindrical reference configuration is used for deformation analysis of a SWNT in the

Table 12 Values of radius R and angle �, for various unde-
formed SWNTs, for parameter set 1

Type of SWNT R �nm� � �°�

�9, 6� Chiral 0.5122 23.4647
�5, 5� Armchair 0.3416 29.8927
�10, 0� Zig-zag 0.3953 0.0
present work.
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�W

�r
= 0,

�W

��R
= 0,

�W

���

= 0,
�W

��Z
= 0 �24�

The first equation in �24�, together with the boundary condition
of a traction-free lateral surface �since TRR=0 on the inner and
outer surfaces of a SWNT, and the nanotube is very thin, it is
assumed that TRR=0 throughout the nanotube�, yields one of the
equilibrium equations �in local form� at the location of each atom
i:

T�i�i
+ 2kRT�iZi

+ k2R2TZiZi
= 0 �25�

which is Eq. �41b� in �32�.

3.1.1 Imposed Extension With Allowable Twist. In this case, in
addition to �24�, one has �W /�k=0. This leads to the additional
equation:

T�iZi
+ kRTZiZi

= 0 �26�

which satisfies one of the local equilibrium equations upon assum-
ing the stresses to be axisymmetric i.e., no � dependence �the
remaining local equilibrium equation is satisfied trivially in this
case�.

Therefore, in general �i.e., for k�0�, the nonzero stress com-
ponents for this problem are TZiZi

,T�iZi
=TZi�i

,T�i�i
.3

3.1.2 Imposed Twist With Allowable Extension. In this case, in
addition to �24�, one has �W /��=0. This leads to the additional
equation:

�1 + ��TZiZi
= 0 �27�

which satisfies one of the local equilibrium equations upon assum-
ing the stresses to be axisymmetric i.e., no � dependence �the
remaining local equilibrium equation can easily be shown to be
satisfied in this case�.

Therefore, in this case, TZiZi
=0, and, from �25�, one has T�i�i

=−2kRT�iZi
. This time, in general, one has the nonzero stress

components T�iZi
=TZi�i

,T�i�i

3.2 A Direct Map for the Extension-Twist Problem. Direct
application of the standard Cauchy-Born rule to nanotubes has the
following problems. It has to be modified �36� to account for the
noncentrosymmetric structure of a SWNT—this has been done in
this work. It is strictly valid for a homogeneous deformation gra-
dient, while F for the torsion problem in this work is not homo-
geneous. Finally, as pointed out in �41�, it must be modified �as
mentioned earlier, this has not been carried out in the present
work� for problems in which the bonds are chords �rather than
tangents� on curved surfaces �such as on a SWNT�. It is, therefore,
interesting to compare the results from using the standard Cauchy-
Born rule to an approach when this rule is not used. Use of a
direct map for the extension-twist problem provides this opportu-

3Equation �32� �TZi�i
=T�iZi

=0� in �32� is expected to be true for armchair and
zig-zag nanotubes but not for a chiral SWNT which tends to twist when extended. It
is noted that for this problem, using T=JF−1 ·� ·F−T �where � is the Cauchy stress
and J=det�F��, one can show that T�iZi

=TZi�i
= �r /R���izi

− �kr2 / �R�1+�����zizi
. Now,

if twist is not allowed, one has k=0,��izi
�0; while if twist is allowed, ��izi

=0,k
�0. In either case, in general, T�iZi

�0. It is noted that numerical results are pre-

Table 13 Values of radius R and angle �, for various unde-
formed SWNTs, for parameter set 2

Type of SWNT R �nm� � �°�

�9, 6� Chiral 0.5235 23.4563
�5, 5� Armchair 0.3490 29.8869
�10, 0� Zig-zag 0.4039 0.0
sented in �32� for only armchair and zig-zag nanotubes, and not for chiral ones.
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nity. The direct map is formulated as follows.
Referring to Fig. 5, atom B has cylindrical coordinates �R ,0 ,0�

�with respect to the undeformed basis �eR ,e� ,eZ��. The position
vector of any atom i, in the undeformed configuration, is

r�0��i� = R cos���i��eR + R sin���i��e� + Z�i�eZ �28�

A bond vector between atoms i and j, in the undeformed con-
figuration, is

r�0��i, j� = r�0��j� − r�0��i� �29�

3.2.1 Cauchy-Born Rule Without Shift Vector. According to
the Cauchy-Born rule:

r2�i, j� = r�0��i, j� · C · r�0��i, j� �30�

where C=FT ·F, with the deformation gradient F given in Eq.
�20�.

The result is:

r2�i, j� = 2r2�1 − cos���j� − ��i��� + 2kr2�Z�j� − Z�i���sin���j�

− ��i��� + �Z�j� − Z�i��2�k2r2 + �1 + ��2� �31�

3.2.2 Direct Map Without and With Shift Vector. The relevant
equations for the direct map without the shift vector are �see table
14�:

Fig. 4 The shaded parallelogram shown above is the unit cell
in a graphene sheet
Fig. 5 Undeformed and deformed cross sections of a SWNT

Journal of Applied Mechanics
r�i� = F�r�0��i�� = r�cos���i� + kZ�i���eR + r�sin���i� + kZ�i���e�

+ �1 + ��Z�i�eZ �32�

r�i, j� = r�j� − r�i� �33�

r2�i, j� = r�i, j�2 = 2r2�1 − cos���j� − ��i��cos�k�Z�j� − Z�i����

+ 2r2 sin���j� − ��i��sin�k�Z�j� − Z�i��� + �1 + ��2�Z�j�

− Z�i��2 �34�
It is noted that the �exact� map expression �34� reduces to the

�approximate� Cauchy-Born expression �31� for small values of k.
The reason for this is explained in the next paragraph.

The shift vector is now introduced in order to allow for relax-
ation at the onset of deformation and also for comparison with
results from the Cauchy-Born rule with shift. Equation �15� with
the shift vector is now replaced by

r�i, j� = F�r�0��i, j� + �� �35�

and the components of the vector � are allowed to be free vari-
ables in the energy minimization process as before. Expressions
�31� and �34� remain the same even with shift, with � replaced by
��+���, and Z replaced by �Z+�Z�.

3.2.3 A Comparison of the Cauchy-Born Rule and the Direct
Map. The general case is illustrated in Fig. 6. From p=F�P�, it is
seen that:

r�i, j� = F�X + r�0��i, j�� − F�X� �36�

By expanding the right-hand side of �36� in a Taylor series
about X, and using F=�F, one has

r�i, j� = F�X� · r�0��i, j� +
1

2!
� F�X�:�r�0��i, j� � r�0��i, j�� + h.o.t.

�37�
where : denotes the action of a third rank tensor on a second rank
tensor that results in a vector, and � denotes the standard tensor
product �see, for e.g. �45��. Equation �37� shows that now the
deformed bond length vector depends not only on the deformation
gradient F, but on its gradients as well. Please note that this still
leads to a strain energy density function �for implementation of
the stationary potential energy principle� that is frame indifferent
under spatially independent, orthogonal rigid body rotations. This

Table 14 The direct map

R→r
�→�=�+kZ
Z→z= �1+��Z
Fig. 6 The direct map F„F„P…=p…
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can be seen from the fact that the expressions for the interatomic
potential depend only on the magnitudes of the bond lengths
�which can easily be shown to be frame indifferent� and the rela-
tive orientations between bonds �and not on the absolute orienta-
tion of any given bond�. These comments on frame-indifference
hold true even when the shift vector is included �35� because the
internal relaxations are performed on the undeformed bond vec-
tors. The expressions for the two methods �Cauchy-Born and di-
rect map� coincide if the deformation gradient is homogeneous, so
that all its gradients vanish. This is the case for the special situa-
tion of pure tension �k=0�. It is also noted that the expressions in
Eqs. �31� and �34� coincide for small k �i.e., when terms of order
k2 and higher are neglected�.

3.3 Numerical Results for Imposed Extension and Twist
Problems. Numerical results are presented in this section for two
SWNT deformation problems: �a� imposed extension with allow-
able twist and �b� imposed twist with allowable extension. Kine-
matic coupling plots are presented for each of the Tersoff-Brenner
parameter sets in Sec. 3.3.1. Also, there are two sets of results—
those obtained by using the Cauchy-Born rule and those from a
direct deformation map �see Sec. 3.3.2�.

It is emphasized again that a “simplified” version of the Tersoff-
Brenner potential �35� is employed in the present work. �This
same simplified version has been used previously in Refs.
�31–33��. In particular, F�i , j� �called Fij in �35�� is assumed to be

zero in the expression for B̄�i , j� �called B̄ij in �35�� in Eq. �10� of
�35�. The primary reason for doing this is to be able to obtain
analytical derivatives of the potential in the expressions for the
PKII stress T and the elasticity tensor C in Eqs. �18� and �19�
�there is no intrinsic difficulty in using the full Tersoff-Brenner
expressions�. Calculation of stresses and elastic moduli has not
been carried out in the present paper but is planned for the near
future. Consequences of using this “simplified” Tersoff-Brenner
model are discussed in Sec. 3.3.1.

Another interesting and important observation is made here. As
mentioned before in Sec. 2.2, the carbon atoms are constrained to

Fig. 7 Kinematic coupling plots for parame
remain on the cylinder surface during the simulation of rolling of
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a flat graphene sheet into a SWNT. At the onset of mechanical
deformation, however, they are allowed to move �relax� �i.e., the
components of the shift vector � are allowed to be nonzero� to a
lower energy state. This is important since, in view of Eq. �19�, a
stress-free configuration must be chosen at the onset of deforma-
tion. They do, in fact, move �i.e., one gets nonzero values of the
components of the shift vector at the onset of mechanical defor-
mation�, and it is possible that some of them migrate away from
the cylinder surface. In this case, R and r are viewed as mean
undeformed and deformed radii of the nanotube, respectively.
This issue will be investigated further in the future by visualizing
the positions of the atoms at the onset of and during deformation.

3.3.1 Numerical Results From the Cauchy-Born Rule. Nu-
merical results for kinematic coupling are presented in Fig. 7 �for
parameter set 1� and in Fig. 8 �for parameter set 2�. Such figures
have not been presented before in the literature. In each figure, �a�
and �b� �for imposed extension with allowable twist� show the
imposed strain in the abscissa and the resulting radius and twist
per unit length, respectively, in the ordinates. Similarly, �c� and �d�
�for imposed twist with allowable extension� show the imposed
twist per unit length in the abscissa and the resulting radius and
strain, respectively, in the ordinates. Three representative SWNTs,
chiral, armchair and zig-zag, are considered in each case. It is
noted that the initial atomic structure of the chiral SWNT is asym-
metric while those of the other two are nominally symmetric.
Also, it is important to note that the results in Figs. 7 and 8 are
obtained by minimizing W (the energy density) without imposing
any symmetry constraints.

It is first observed that the trends are similar for the two param-
eter sets. Also, certain kinks �in Figs. 7�a�, 7�b�, 8�a�, and 8�b��
and jump discontinuities �in Figs. 8�a� and 8�b�� are observed at
relatively large values of strain. These kinks and jumps are related
to the use of the “simplified” Tersoff-Brenner model. This issue is
discussed later in this section.

Comments on the results presented in Figs. 7 and 8 appear
below.

set 1 „k for „5,5… and „10,0… coincide in „b……
ter
3.3.1.1 Onset of deformation, zero stress, nonzero strain. It is
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ter
noted that in Figs. 7�d�, 8�d�, and 9�b�–9�d�, the SWNTs exhibit
nonzero � at k=0. The reason for this is as follows. As stated
before, � and k are measured with respect to the undeformed,
unrelaxed ��=0� configuration. Relaxation at the onset of defor-
mation causes the atoms to move to the lowest energy state ��
�0� at which the stress is zero but the strain � might no longer be
zero. A similar behavior has been reported in �36� �p. 239� for
silicon. In fact, if the atoms are constrained to lie on the cylindri-
cal surface �by setting �R=0�, one obtains �=0 at the onset of
deformation �k=0�. However, this does not ensure a lowest-
energy undeformed configuration and hence fully three-
dimensional relaxation is allowed in the present work, thereby
guaranteeing a stress-free undeformed configuration.

3.3.1.2 Poisson effect. Figure 7�a� exhibits the well-known
Poisson effect. The behavior in Fig. 7�c� can be called a “gener-
alized” Poisson effect. It is noted that, as expected, the radius
changes caused by twist �Fig. 7�c�� are, in general, much smaller
than those caused by extension �Fig. 7�a��. Also, as expected, the
curves for the armchair and zig-zag SWNTs in Fig. 7�c� are sym-
metric with respect to k. Similar comments apply to Figs. 8�a�,
8�c�, 9�a�, and 9�b�. Finally, the chiral nanotube, with an initially
asymmetric structure, shows the largest coupling.

3.3.1.3 Twist under imposed � in Figs. 7(b) and 8(b). As ex-
pected, the chiral nanotube twists under imposed extension, while
the armchair and zig-zag nanotubes do not �i.e., the induced twist
for the armchair and zig-zag nanotubes is zero within the plotting
scale throughout the range of imposed extension�. This is related
to the fact that the chiral nanotube has an asymmetric bond struc-
ture while the armchair and zig-zag nanotubes are nominally sym-
metric about the cylinder axis �Fig. 1�.

3.3.1.4 Extension under imposed k in Figs. 7(d) and 8(d). It is
observed that the chiral nanotube exhibits an asymmetric coupling

Fig. 8 Kinematic coupling plots for parame
between extension and twist, for imposed twist. For example, �

Journal of Applied Mechanics
�0 for k�0 and can be �0 for k�0. The armchair and zig-zag
nanotubes, however, exhibit a symmetric extension ��k� about k
=0 owing to their nominally axisymmetric atomic structure �Fig.
1�. Further, the zig-zag �10,0� nanotube exhibits the largest � for
large values of k.

3.3.1.5 A posteriori evaluation of the use of the “simplified”
Tersoff-Brenner potentials. It has been mentioned before at the
start of Sec. 3.3 that a “simplified” version of the Tersoff-Brenner
potential for carbon has been employed in this work. In particular,

F�i , j� is assumed to be zero in the expression for B̄�i , j� in Eq.
�10� of �35�. An investigation of the relationship of kinks and
jumps in some of the figures in Figs. 7 and 8, with the term F�i , j�,
is carried out below.

Equation �10� of �35� �in slightly modified notation� reads

B̄�i, j� = �1/2��B�i, j� + B�j,i�� + F�N�t��i�,N�t��j�,N�conj��i, j��
�38�

In the above, N�t��i� is the total number of carbon atoms bonded
to carbon atom i and N�conj��i , j� depends on whether a bond be-
tween carbon atoms i and j is part of a conjugated system. They
are given by the expressions:

N�t��i� = �
j

fc�r�i, j�� �39�

N�conj��i, j� = 1 + �
k��i,j�

fc�r�i,k��Fc�x�i,k��

+ �
���i,j�

fc�r�j,���Fc�x�j,��� �40�

set 2 „k for „5,5… and „10,0… coincide in „b……
where:
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Fc�x�i,k�� = �1 x�i,k� � 2

�1/2��1 + cos���x�i,k� − 2��� 2 � x�i,k� � 3

0 x�i,k� 
 3
�
�41�

x�i,k� = N�t��k� − fc�r�i,k�� �42�

and fc�r� is given in Eq. �4�.
In order to satisfy periodicity of the structure of a SWNT, it is

assumed in �42� that �see Fig. 3�:

NX1

�t� = NX2

�t� = NX
�t�, X = B,C,D �43�

Table I on p. 9462 of �35� states that F�2,3 ,1�=F�2,3 ,2�
=−0.0465,F�1,2 ,2�=−0.0355 for parameter set #1; Table III on
page 9464 of the same paper states that F�2,3 ,1�=F�2,3 ,2�
=−0.0363,F�1,2 ,2�=−0.0243 for parameter set #2. Also,
F�i , j ,k�=F�j , i ,k� ,F�i , j ,k�2�=F�i , j ,2� �where i , j ,k are inte-
gers�; and other values of F with integer arguments are zero. Val-
ues of F with noninteger arguments, however, can be nonzero
because 3D splines are used in �35� to define smooth extensions of
F near integer arguments.

Using the above equations, the values of N�t��X� and
N�conj��X ,Y� �where X=A, B, C or D� have been calculated for
various stages of imposed extension, for each of the three nano-
tubes considered before �see Figs. 7�a�, 7�b�, 8�a�, and 8�b��. It is
observed that most of these curves exhibit discontinuities in either
the slope, or the value of the function, at certain values of strain.
�In fact, certain jumps in values are so large as to go off-scale, and
are not shown in these figures.� It has been established that each
discontinuity is associated with at least one transition from integer
to real or real to integer, of the arguments of the function F in Eq.

Fig. 9 Comparison of results from the Cauchy-Born rule and th
for parameter set 2.
�38�. It can be concluded that the results in these figures portray
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those from the full Tersoff-Brenner model up to �=�� in each
case. These values are shown in Table 15. It is observed that the
minimum transition strain is 26% for the Tersoff-Brenner param-
eter set #1 and 29% for the Tersoff-Brenner parameter set #2.

The results for imposed twist in Figs. 7�c�, 7�d�, 8�c�, and 8�d�
display no kinks or jumps. As expected, it has been verified that
the function F is zero for these cases, so that the simplified
Tersoff-Brenner expressions apply over the entire range −0.5�k
�0.5 rad/nm.

3.3.2 Numerical Results From the Direct Map. All the results
from the Cauchy-Born rule, shown in Figs. 7 and 8, have been
recomputed using the direct map described in Sec. 3.2. The dif-
ferences between the two sets of results are summarized below.

Results from parameter set #1 are considered first. The results
shown in Fig. 7�a�, 7�b�, 8�a�, and 8�b� �for imposed extension�
remain unchanged while small changes are observed in those
shown in Fig. 7�c�, 7�d�, 8�c�, and 8�d� �for imposed twist� at large
angles of twist. This is consistent with the analytical expressions
for deformed bond lengths obtained using the Cauchy-Born rule
and the direct map, which have been shown to be identical at

irect map for parameter set 1. Very similar results are obtained

Table 15 Values of smallest transition strains indicating earli-
est occurrence of transition of arguments of F from integer to
real values. Results for parameter set #1 appear in Figs. 7„a…
and 7„b… while those from set #2 appear in Figs. 8„a… and 8„b….

Set #1 Set #2
SWNT �� ��

�9,6� 0.35 0.325
�5,5� 0.30 0.29

�10,0� 0.26 0.35
e d
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small angles of twist. In the imposed extension case, the induced
angles of twist are not large enough to cause a noticeable differ-
ence between the Cauchy-Born and the direct map results for any
of the three types of nanotubes �chiral, armchair, and zig-zag�.
Some of the results from using the Cauchy-Born rule and the
direct map for imposed twist cases are compared in Fig. 9. Small
differences between the two are observed at large values of k. The
�5,5� nanotube, which has the smallest diameter among the three
CNTs considered, exhibits the largest difference between the plots
obtained from the Cauchy-Born rule and the direct map. The ef-
fect of CNT diameter on this difference was studied by obtaining
similar comparison plots for a �3,3�, �15,15�, and a �25,25� nano-
tube �plots not shown�. It has been observed that the difference
decreases with increasing CNT diameter—the results from the
two models �Cauchy-Born rule and direct map� nearly coinciding
for the �25,25� CNT. This observation agrees with the fact that the
approximation of a tangent vector by a chord vector �as elucidated
in Sec. 2.4� improves with increasing CNT diameter.

Similar behavior is observed for parameter set #2 in all the
cases. For both parameter set #1 and set #2, the jumps observed in
Figs. 7�a� and 7�b� �as for, Figs. 8�a� and 8�b�� still occur at the
same strain locations with the direct map, but the strengths of
these jumps generally tend to be different from those observed
with the Cauchy-Born rule.

4 Concluding Remarks
The following remarks are in order:

• Results from the two Tersoff-Brenner parameter sets are
qualitatively similar but can have some quantitative differ-
ences in certain cases.

• An a posteriori check reveals that the analytically conve-
nient, simplified version of the Tersoff-Brenner potential,
employed in this work, remains valid for reasonably large
strains for the SWNTs considered in this work �at least 26%
for parameter set #1 and 29% for parameter set #2 � and
twist per unit length �±0.5 rad/nm�. Actual strains in
SWNTs are expected to be much smaller than these values
in most practical applications.

• The results from applying the standard Cauchy-Born rule
directly to nanotubes �with no modifications� are found to be
in excellent agreement with those from the direct map at
small angles of twist and slightly different at larger angles of
twist �see Fig. 9�. However, the Cauchy-Born rule �to be
made more accurate in future work with modifications as
suggested in �41�� is very useful for �a� determination of
stresses and moduli, and �b� more complicated problems in
which a direct map is not available. The Cauchy-Born rule
gives W�C� from which the stresses can be obtained in a
standard manner, while the direct map leads to a more com-
plicated higher gradient theory with W�F ,�F ,¼� which re-
quires a more involved procedure to perform stress analyses.

• Similar calculations with other SWNTs �for example �10,10�
and �12,0�� yielded results that are qualitatively similar to
those given in this paper.

• Each SWNT structure has been allowed to relax �i.e., the
shift vector is allowed to be nonzero� at the onset of defor-
mation. Nonzero shifts �i.e., ��0� are obtained at zero
deformation in all cases.

Future work will focus on the use of this model with possible
modifications to study more complicated deformations of a
SWNT.
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An Energy Balance Criterion for
Nanoindentation-Induced Single
and Multiple Dislocation Events
Small volume deformation can produce two types of plastic instability events. The first
involves dislocation nucleation as a dislocation by dislocation event and occurs in nano-
particles or bulk single crystals deformed by atomic force microscopy or small nanoin-
denter forces. For the second instability event, this involves larger scale nanocontacts
into single crystals or their films wherein multiple dislocations cooperate to form a large
displacement excursion or load drop. With dislocation work, surface work, and stored
elastic energy, one can account for the energy expended in both single and multiple
dislocation events. This leads to an energy balance criterion which can model both the
displacement excursion and load drop in either constant load or fixed displacement
experiments. Nanoindentation of Fe-3% Si (100) crystals with various oxide film thick-
nesses supports the proposed approach. �DOI: 10.1115/1.2125988�
Introduction

Different types of yield instabilities under nanoscale contacts
have been observed for over 30 years �1–3�. One type involves
displacement excursions of multiple dislocations occurring mul-
tiple times. This has been called “staircase yielding” as shown in
Fig. 1�a� for single crystal gold �4�. We denote this as a multiple
dislocation avalanche event. On the other hand, atomistic simula-
tions of perfect surfaces, such as that shown in Fig. 1�b� for alu-
minum �5�, can detect the onset of the first dislocation nucleated.
Henceforth, we will denote this type as a single dislocation event.
Here, “staircase yielding,” which occurs subsequently as multiple
load drops due to displacement control, can also be identified with
single dislocation events. These events can occur during indenta-
tion of perfect surfaces. Surfaces with thin oxide films can also
undergo multiple dislocation avalanche events, usually at much
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higher loads �6�. What we will show in the present study is a
simple model for these single dislocation and multiple dislocation
avalanche events.

In many metals and semiconductors with oxide films there are
in fact two yield points previously identified by nanoindentation
which will eventually have to be considered by nanostructural
designers. The first yield point of interest, often alluded to experi-
mentally but most often not detected, is the nucleation of the first
dislocation. This can occur at extremely early stages of contact at
asperities or ledges or at defects in oxide films �3,7–13�. Most
often this should be represented by a displacement excursion on
the order of a Burgers vector. Originally, experiments such as
those run by Gane and Bowden �1�, Gane �2�, and Gane and Cox
�3� associated with either large displacement excursions or resis-
tivity drops were probably not detecting the first dislocation. In
later experiments under ultra high vacuum �UHV� the first dislo-
cations were probably detected in Ni �7� since the displacement,
showing a plastic response, was only on the order of a nanometer.
Much later Page et al. �14� proved by transmission electron mi-
croscopy �TEM� that dislocations in Al2O3 had been emitted dur-
ing a displacement excursion. Even later in a series of experi-
ments on Fe-3% Si �12,13�, GaAs �15�, and tungsten �13� it was
indirectly shown that dislocations were injected well below the
first obvious yield discontinuity. For example, one could load and

unload an Fe-3% Si single crystal to 2.0 mN with a diamond tip
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and the behavior appeared perfectly elastic. However, if the ma-
terials were cycled to one-third that load, after about six cycles a
yield excursion representative of a large avalanche of dislocations
occurred �12�. It was proposed that a sufficient number of dislo-
cations were emitted during each cycle to provide a local back-
stress to break through a thin oxide film at the Fe-3% Si surface.
In the same set of experiments a hold at a constant load half of
that required for a monotonically-produced yield excursion pro-
duced load relaxation. Permanent displacement was evident upon
unloading again suggesting dislocation nucleation prior to the first
discontinuous event observed on monotonic loading. At almost
the same time Lilleodden et al. �15� observed reverse plasticity in
GaAs after unloading from indentations prior to any yield excur-
sion. Following this, Kramer et al. �13� in a series of elegant
experiments on W �001� surfaces demonstrated that nanoindenta-
tions, produced at loads prior to a well-defined yield excursion,
developed a depression. Even more significant, these plastic im-
pressions disappeared by reverse plasticity during repeat scanning.
These studies gave evidence that single dislocation events could
be followed by multiple dislocation avalanches in materials with
thin surface oxide films. On the other hand, in Au with an absence
of an oxide film, Corcoran et al. �4� and Houston et al. �16,17�
found yield excursions that seemed to imply that the 1.8 GPa

Fig. 1 Examples of “staircase yielding” in both „a… experimen-
tal †4‡ and „b… simulation †5‡ results
shear stresses observed were consistent with dislocation nucle-
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ation. This was also consistent with molecular dynamics modeling
of homogeneous loop nucleation beneath the contact �18� in Au.
Since then a large number of atomistic simulations on Au �18�, Ag
�19�, Al �5,20�, and Cu �21� have all indicated either displacement
excursions or load drops associated with the first dislocations
nucleated �see Fig. 1�b��. These ideal situations are seldom if ever
achieved experimentally unless one uses ultra high vacuum �with
an adhesion problem� or passivates the surface with a self-
assembling monolayer �17�. Recently, the evaluation of silicon
nanoparticles shown in Fig. 2 strongly suggested that single dis-
location events could be detected �22�. In expanded form, this is
shown in the Fig. 2�b� insert where it is clear that the sum of the
displacement excursions is equivalent to the residual displacement
on unloading. In a later paper �23� at higher loads, this equiva-
lency breaks down due to reverse plasticity. For the first yield
event, then, this most often occurs at very small nN or �N forces
and results in subnanometer displacement excursions. This is in-
dicated by both atomistic simulations and nanometer scale con-
tacts of nanospheres and nanocubes of silicon.

The second yield event of interest occurs on oxidized surfaces.
Because of thin oxide films initially preventing egress of disloca-
tions, the load at film fracture can be quite large resulting in a
dislocation avalanche. We have proposed this occurs by disloca-
tions created at lower loads. At increasing load, their backstress
eventually creates a local stress sufficient to break the oxide film
resulting in a dislocation avalanche �12�. In these systems, single

Fig. 2 „a… Representative transmission electron micrograph of
a silicon nanoparticle. „b… Load-displacement results of the re-
peated compression of a 39 nm diameter silicon nanosphere.
The inset shows the initial compression of the nanosphere with
distinct displacement excursions.
dislocation nucleation events can still occur which initially do not
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lead to dislocation avalanches. This would represent initial yield-
ing. As to the second avalanche event, we will demonstrate that an
energy balance criterion can model the behavior associated with
an oxide breakthrough mechanism in Fe-3% Si single crystals
having different oxide film thicknesses. It is emphasized that both
of these events will most often occur at the same contact provided
the load is increased to sufficient levels for oxide breakthrough.

To recapitulate then, we propose there are two yield point
events in many small volume films and nanostructures covered
with thin oxide films. The first is a single dislocation nucleation
event which can be important to small force contacts which might
compromise the operational characteristics of microelectronic,
magnetic, optoelectronic, and microelectromechanical system
�MEMS� devices. The second is a dislocation avalanche event
which can be important to larger contact forces initially sustain-
able by oxide films. This represents the yield point most fre-
quently observed except perhaps in gold which is not oxidized,
but may have a weakly bonded carbonaceous film at the surface.
As the second event can be cycle and time dependent, it is of
importance to friction and wear processes in MEMS, shape
memory products and biomedical leads which can be exposed to
multiple cycles and long lifetimes. The following theoretical back-
ground, proposed model and experimental observations address
these single dislocation and avalanche events, predominately in
Si, Au, Al, and Fe-3% Si.

Single Dislocation Events
Recently, we have been evaluating the plasticity characteristics

of nanospheres of silicon and titanium similar to that shown in
Fig. 2�a�. As explained elsewhere �22�, these rapidly cooled par-
ticles from the melt are generally spherical and free of line and
planar defects. Occasionally crystallographic facets at the surface
and twin boundaries in the interior are found by TEM �24�. For
four reasons these make nearly ideal test specimens for single
dislocation events. First, for small diameter nanospheres the con-
tact area at initial displacements is very small allowing for contact
stresses large enough to nucleate dislocations but insufficient to
break the oxide film away from the contact. As the nanosphere is
generally line or planar defect free the initial event is either a
single loop nucleated from a step or contact edge at the free sur-
face or one homogeneously nucleated in the interior beneath the
contact. Second, no dislocation avalanche forms at low contact
forces where the initial plasticity occurs. Third, even at larger
plastic strains, avalanches of dislocations have not been detected.
This is proposed to be due to the smaller dislocation content and
the lack of long-range pileups producing large backstresses suffi-
cient to break oxide films. Fourth, the volumes of the nanospheres
are sufficiently small so that 1:1 experiment/simulation studies are
feasible. Previous tests of these relatively ideal single crystal
samples demonstrated that silicon had higher than normal
strength, produced yield discontinuities at relatively low loads and
under larger displacements work-hardened substantially �22,23�.
As they also exhibited reverse plasticity �23�, it was concluded
that dislocation plasticity was the main, if not the only source of
plasticity. One can see that the Burgers vector sized steps in the
load-displacement curve in the inset of Fig. 2�b� sum to the total
residual displacement. Additionally, some small volume TEM in
situ indentation experiments into wedge shaped silicon samples
demonstrated dislocation loops and no phase transformation �25�.
Finally, TEM images of a plastically deformed nanostructure of a
similar size to the nanosphere provided evidence of dislocation
activity but no phase transformation or amorphous phase �26�.

The intriguing aspect of the multiple steps seen in the inset of
Fig. 2�b� described here and elsewhere �22,23� is that these each
are on the order of 0.2 nm, slightly less than a Burgers vector in
silicon. We have taken this as evidence of dislocation emission. As
stored elastic energy was released when each of the yield excur-
sions in the Fig. 2 inset occurred, it was first necessary to specu-

late on where the energy was absorbed. An obvious choice was
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plastic work associated with moving a dislocation. To solve this
problem one needs to know where the dislocations nucleate, of
what character they are and where they end up inside the nano-
sphere. For a single loop inside a sphere a solution by Willis �27�
exists but it was desirable to have this for all of the steps shown.
The situation was idealized to sequential prismatic loops of the
same size as the contact radius, a. This is schematically shown in
Fig. 3. Emitting the first dislocation at the edge of the contact
requires a force needed to exceed an image force combined with a
resisting Peierls barrier. When it exceeds this, the dislocation
glides to a new equilibrium position. There are three caveats here
regarding the validity of the image force as used. One is that the
loop would have to be slightly outside the contact to experience a
free surface. The second caveat is that a vacuum is used to repre-
sent the image force condition meaning that the oxide film is
broken. As this might act as the nucleation site, this is also pos-
sible and even if not, the modulus of SiO2 is substantially less
than Si �70 GPa�160 GPa�. The third caveat is that we consider
prismatic loops while shear loops might be just as likely or more
so. There is currently a work in progress to more clearly identify
the dislocation character.

Given those caveats, a Hertizan stress distribution was utilized
for a given spherical contact as provided by Johnson �28�. This
was further coupled to a dislocation model for crack tip shielding
of a plastically polarizable material by Zhou and Thomson �29�.
By substituting the spherical contact stress field for the crack-tip
stress field one finds a shear stress of
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Here, po is the maximum pressure, zi is the distance below the
contact, a is the contact radius, � is the Poisson’s ratio, � is the
shear modulus, and bi and bj are the Burgers vectors of the ith and
jth dislocations in this case assumed to be the same. Additionally,
at �zi=� f, this friction stress may stop further dislocation motion.
Then, by increasing the driving force and exceeding � f, the dis-
location may move freely to a deeper position below the surface
where again �zi=� f and arrest occurs. A simulation using Eq. �1�
is described more fully in the discussion of Fig. 3 later. The maxi-
mum pressure for a spherical contact is 3P /2�a2, where P is the
external load. The first term in Eq. �1� is the external driving
force, the second term is the image force, and the third is the
interaction force from any previously injected dislocations.

To check if Eq. �1� represents a reasonable description of the

Fig. 3 Idealized compression of a nanosphere
dislocations at equilibrium arrest positions we utilized experimen-
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tal observations from the study of Rodriguez de La Fuente et al.
�30�. Their experiments involved nucleation of dislocations by a
tungsten scanning tunneling microscope �STM� tip driven into an
Au �001� surface. Hillocks representing surface displacements as-
sociated with dislocations just beneath the surface were detected
at 40.4, 58, and 82 nm from the center of the indentation. As these
dislocations were traveling parallel to the free surface as pushed
by the tungsten tip, two caveats or modifications of the use of Eq.
�1� were required. First, we assume semicircular isostress contours
which, while not the elastic stress distribution, has been shown to
be fairly representative of the von Mises stress for shallow inden-
tations into tungsten. For this continuum simulation, a three-
dimensional, elastic-plastic finite difference formulation used the
principle of virtual power �31�. The modification is that the image
force for the driving of dislocations away from the tungsten tip
involves a bimaterial interface. This can be seen by tracing back
the dislocations to their origin and arriving at the tungsten tip. In
terms of Dundurs parameters, � and �, the image force is given
by

Fi =
�1�b1

2 + b2
2��� + �2�

4��1 − ���1 − �2�xi
�1a�

where b1
Au is ao /
6 for the partial dislocation in Au and b2

W is
assumed to have the same form constituting the image dislocation.
Also, �1 and �1 for Au are 30 GPa and 0.4 while �2 and �2 for W
are 140 GPa and 0.28. The Dundurs parameters are

� =
��1 − �1� − �1 − �2�
��1 − �1� + �1 − �2�

; � =
1

2

��1 − 2�1� − �1 − 2�2�
��1 − �1� + �1 − �2�

�1b�

with �=�2 /�1=4.67. Calculation of the friction stress at the three
positions noted by the Hillocks in the STM micrograph of Fig. 1,
Ref. 30, resulted in a friction stress of 90±3 MPa. This required a
use of Rtip=16 nm which is realistic since STM tips are often
between 10–20 nm in radius. The satisfying aspect of this is that
the friction stress is very close to the flow stress of 80 MPa pre-
viously used for indentation into Au �001� surfaces �32�. With this
confirmation, we return to the silion experiments and apply this to
the first four displacement excursions in the inset of Fig. 2�b�.
Using Eq. �1�, the modeling is accomplished with �=66 GPa, �
=0.218, and b=0.236 nm for this 39 nm diameter silicon sphere.
The resulting stress on the assumed prismatic loop at distances z
below the surface are shown in Fig. 4 for the load associated with
each excursion. For the first one at P=0.92 �N, the dislocation
sees an initial negative stress as the loop starts to form and gradu-
ally goes positive as it proceeds further beneath the surface. When
the positive stress becomes sufficiently large to exceed the friction
stress, here assumed to be a Peierls stress of 4 GPa, the disloca-
tion can freely glide to a distance about 8 nm below the surface
where it arrests also seen in Fig. 4. A friction stress of 4 GPa,
about one-third of the 12 GPa hardness for silicon, is due to its
high Peierls barrier of 2.4 eV. For the second dislocation emitted
at the bottom, we allow the positions of both the top and bottom to
readjust until the forces are zero consistent with a Peierls stress of
4 GPa. A similar iterative procedure was used for the third and
fourth dislocations alternatively allowed to nucleate from the top
and bottom sequentially. The final positions of all four disloca-
tions are indicated in Fig. 4 with z representing the distance from
the top of the sphere for dislocations 1 and 3 and from the bottom
of the sphere for dislocations 2 and 4. While the stress would
continue to fall at the far right below the dotted line we terminate
the curves there to show the dislocation arrest positions. The real
work associated with moving these dislocations is the force on the
dislocation per unit length, 	b, times the loop length, 2�a, times
the distance, z. For the first dislocation the position z is 1.02 nm.
This is the distance the dislocation moves before it can glide
freely to its equilibrium position where the stress equals 4 GPa.

The plastic work then for this excursion is
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Wp = 	b · 2�a · z . �2�
Energy can also be absorbed by new surface creation. Here we
take the contact area before and after the excursion, giving


S = ��sA�after − ��sA�before �3�

and use �s=1.56 J /m2 for Si. Using Eq. �3� requires an area of
2�a2 since there is a contact both at the top and bottom of the
sphere. In addition to this energy absorbed, some elastic energy
remains within the created loop, given as


U� = �a�1 +
1

1 − �
��b2

4�
ln�ae2

b
� �4�

where the first term in brackets is for a dislocation of half screw
and half edge character, and the second term is the energy per unit
length for a screw dislocation which includes a continuum de-
scription of the core energy contribution. The reason we pick a
mixed dislocation representation is that it is probably more likely
that shear loops are created as opposed to prismatic loops. In
either case for the final summation of energy this makes a rela-
tively small difference since the stored elastic energy is less than
20% of the total and pure screw versus half edge and half screw
only varies by 14% making a maximum difference in the total
energy of less than 3%. This energy that is absorbed or remaining
is balanced by the external work such that

Pd
exc = 
Wp + 
S + 
U� �5�

where the external work is Pd
exc. As shown in Table 1 these
three terms represent 93±20% of the work in the yield excursion.

To examine whether the critical distances, z, below the indenter
from Eq. �1� and used in Eq. �2� were realistic, we additionally
checked an atomistic simulation by van Vliet et al. �20� conducted
using a 13 nm radius indenter penetrating a defect-free Al �001�
crystal. The load-displacement curve under predominantly dis-
placement control exhibited the load drops shown in Fig. 5�a�.
From reviewing their on-line simulations �Ref. 40 in �20��, it ap-
peared that all load drops except the second one were associated
with prismatic dislocation loop nucleation. With six dislocations
nucleated, the discretized dislocation approach represented by Eq.
�1� was simulated using �=26.3 GPa, �=0.33, b=0.2865 nm and
a friction stress of 0.35 GPa. After the first dislocation exceeded

Fig. 4 Stress-depth curves for the four dislocation loops
formed when compressing a 38.6 nm silicon nanosphere. The
initial work is governed by the crossing point with a Peierls
stress of 4 GPa which also defines the arrest position.
the friction stress at z=1.62 nm, it would glide free and arrest at

Transactions of the ASME



12.4 nm, the highest curve in Fig. 5�b�. The second dislocation
could then be emitted until at 2.19 nm below the surface it could
freely glide to 10.2 nm. In doing this the stress on the first dislo-
cation rose to 0.49 GPa and then decayed back to 0.35 GPa at a
new position of 15 nm. We know this is not completely accurate
since the computer simulation cell is only 20 nm deep and we
have assumed no image effect at the back free surface. When the
original stress exceeds the friction stress at values of z=z* ranging
from 1.6 to 4.8 nm, 6 loops are sequentially emitted under in-
creasing load. These result in the load drops indicated in Fig. 5�a�,
the loads and z=z* values being indicated in Table 1. As summa-
rized in Table 1, the proposed model determination of the dislo-
cation work, surface work and stored elastic energy in the dislo-
cation agrees well with the external work done except for the first
dislocation, i.e., Wext compares well to Wint in Eq. �5�. For all of
these cases, it is clear that this model appears to account for the
external work done in the early stages of dislocation plasticity in
small volume contacts. This also gives a reasonable basis for us-
ing an energy balance criterion when large numbers of disloca-
tions are involved in an avalanche during a yield excursion.

Multiple Dislocation Avalanche Events
Multiple dislocations released in displacement excursions like

those in Fig. 1�a� might contain 20 or more dislocations. Here, the
assessment is slightly different than that above for three reasons.
First, it is too difficult to do the bookkeeping with the type of
simulation represented by Eq. �1�. Second, many of the disloca-
tions may have escaped. The escape of dislocations which we
know happens at indents with pileup implies either slip steps or
oxide film cracking with new surfaces created. Recently, we have
treated this with an energy balance criterion for somewhat larger
plasticity in small volumes of various shapes such as shallow
contacts of single crystals, nanospheres, and nanoboxes �26,33�.

Constant Load Excursion, dP=0. For this larger scale plas-
ticity we consider the energy absorbed by plastic work, Wp, and
surface energy, Us, to be balanced by the driving force, the exter-
nal work, Wext minus the elastic energy change, UE. At constant
load this is

Wp + Us − �Wext − UE� = 0. �6�
Consider how this might apply to the relatively larger yield ex-
cursions shown in Fig. 1�a�. These excursions in the load-
displacement curves occur rapidly as dislocations are created and
move faster than the indenter tip. We can use such a dislocation
avalanche to evaluate the plastic energy absorbed. For a group of
dislocations the energy absorbed plastically is the force per unit
length of each prismatic loop multiplied by their length, their

Table 1 External work and energy balance in Si experiments †2
are from Refs. 22 and 20 with the remainder being calculations
units are multiplied by 1016 for both J and m2.

P �N
d
exc
nm

Wext
J


A
m2

Si exp. 0.92 0.155 1.43 0.187
Si exp. 2.2 0.19 4.1 0.228
Si exp. 3.2 0.16 5.12 0.183
Si exp. 3.4 0.12 5.28 0.142


, nm dP, nN

Al sim. 0.703 45 0.316 0.012
Al sim. 0.984 62 0.61 0.0209
Al sim. 1.23 74 0.909 0.0308
Al sim. 1.53 64 0.979 0.0125
Al sim. 1.73 92 1.59 0.0282
Al sim. 1.92 75 1.44 0.0157
2‡ and Al simulations of Van Vliet et al. †20‡. The first two columns
from the present model based on Eqs. „1…–„10…, „16…, and „17…. The


Ws
J

z*

nm

Wp

J

U�

J Wint

0.291 1.02 1.05 0.27 1.61
0.356 1.49 2.33 0.46 3.15
0.285 1.64 3.3 0.53 4.11
0.221 1.88 4.53 0.62 5.37

0.0133 1.62 0.309 0.2 0.522
0.023 2.19 0.419 0.24 0.682
0.0338 2.58 0.562 0.27 0.866
0.0137 2.86 0.748 0.31 1.07
0.0311 3.73 0.874 0.33 1.24
0.0173 4.85 1.14 0.35 1.51
average distance moved and the number moved, giving

Journal of Applied Mechanics
Fig. 5 „a… From Van Vliet et al. †20‡, the simulated force-
displacement curve for an indentation into aluminum crystal
and „b… the corresponding stress-depth curves using the
present model in conjunction with their data for six loops. The
second load-drop at B was not considered to correspond to a

dislocation loop formation.
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Wp � 	flow
localb · ��a · a ·




b
� ��a2	ys
; �  1

force

unit length
· ave. length · dist. · number �7�

where � is a constant and 
 is the depth of the indenter penetra-
tion. This gives the same result used previously �34� if c, the
plastic zone radius, is equal to 2a, twice the contact radius. With
plasticity the contact radius is best characterized by a geometric
contact as given by a2=2
R−
2. For 
�R, this is given by 

=a2 /2R. Taking the shear flow stress to be two-thirds the com-
pressive flow stress with the latter being one-third the hardness,
one finds �26�

Wp �
�Pa2

9R
=

2�P


9
. �8�

Besides plastic energy absorption, there is a surface energy ab-
sorption for indentation, again using 
=a2 /2R given by,

Us = ��s�a2 = 2���sR
; �  1. �9�

The value of �1 used here and elsewhere �26� is a recognition
that a greater proportion of slip step emergence and/or oxide film
fracture around the contact area represents new area greater than
just the contact.

For the stored elastic energy, UE, there are the number of dis-
locations in the avalanche, 
 /b with an average length ��a. Par-
allel to Eq. �4�, this term becomes

UE =



b
· �R ·

�b2

8�
�1 +

1

1 − �
�ln�ae2

b
� � ��b
R . �10�

The latter approximation comes from the last two terms in brack-
ets and the average length scaling with the tip radius rather than
the contact radius as used in Eq. �7�. This difference is in recog-
nition that the final configurations of the dislocation would be
larger than the initial if these are shear loops. Using Eqs. �7�, �9�,
and �10� with Eq. �6� allows an energy balance similar to that for
Eq. �5�. From Eq. �7�, a2 is used as 2
R, and Eqs. �9� and �10�
remain the same. Writing Eq. �6� in terms of 
 gives

��2R
2	flow + 2���sR
 − �P
 − ��bR
� = 0. �11a�

Table 2 Displacement excursion data under load control for v
was 80 nm radius…

Film,
nm 
0, nm 
 f, nm


exc,
nm P, �N

3.6 7.1 17.7 10.6 59.6
6.2 18.5 12.3 72.8
5.7 10.4 4.7 46.6
6.6 18 11.4 62.3
6.3 13.3 7 54.8
6.5 12.1 5.6 48.9
5.4 16.2 10.8 60.6
5.5 9.5 4 37.2

5.6 14.4 40.2 25.8 117
9.2 25.2 16 83.1
7.9 30.3 22.4 99.4
9.9 30.6 20.7 98.6

10.6 30.7 20.1 91.7
11.4 38 26.6 117
8.9 28.9 20 98.4

10.6 38 27.4 123
One can see this reduces to
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 =
P − �o

2��R	flow
local ; �o = 2���sR + 4��bR �11b�

where �o is constant for a given material being indented with a tip
of radius R, and �, � are greater than one. As before, we take the
local shear flow stress to be two-thirds the compressive flow stress
which in turn is one third the hardness or mean pressure. With
a2=2
R, this gives

	flow
local =

2

9
·

P

�a2 =
P

9�
R
. �12�

For a yield excursion as in Fig. 1�a�, dP=0. With Eq. �12�, this
instability is represented by

− d	flow
local �

	flow
local



d
 . �13�

This incremental decrease in flow stress is balanced by an incre-
mental increase in displacement which increases contact area. One
can show for the experiments to be described later that P��o
such that Eqs. �11� and �13� can describe an excursion from 
o to

1 by

�

o


1 d



2 = −
2��R

P �
	o

	1

d	flow. �14�

For a displacement excursion, 
exc, represented by 
1−
o, this
gives


exc =
2�
 f

9	flow
local�	o − 	1�local. �15�

It is seen directly that Eq. �15� is the incremental form of Eq. �13�.

Fixed Displacement Excursion, d�=0. Here we use the
equivalent energy changes for small excursions,

Pd
 = 
dP . �16�

Combining Eqs. �15� and �16� we find

Pexc = 2��R
 fd	flow
local. �17�

Noting that d	flow
local is a decrease in flow stress, it is seen that Pexc

is a load drop. This represents the incremental form of Eq. �11b�
for displacement control and �o a constant. In the next section we
compare these displacement and load excursion estimates to in-
dentation observations like those in Fig. 1 but specific to instabili-

ous oxide thicknesses on Fe-3% Si „001… crystals „indenter tip

Film,
nm 
0, nm 
 f, nm


exc,
nm P, �N

9 12.3 28 15.7 110
12.3 39.4 27.1 114
12 39.8 27.8 115
12.4 39.4 27 117
12.3 39.1 26.8 118
13 38.3 25.3 111
14.2 40.4 26.2 114
13.5 38 24.5 112

17.4 12.4 60.2 47.8 196
11 47.1 36.1 160
12.4 59.5 47.1 191
11.3 53.5 42.2 171
8 45.5 37.5 151

11 58.4 47.4 197
11.6 58.4 46.8 191
14.3 55.9 41.6 176
ari
ties where oxide film effects were known to be important.
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Discussion
Fortunately, a large number of yield instabilities had previously

been observed under both displacement control producing load
drops �34�, and load control producing yield excursions �6� but
not all of the details had been presented. Details are presented in
Tables 2 and 3 for load and displacement control, respectively. A
micromechanical test apparatus with a diamond indenter tip radius
of 66 nm was used for the displacement control experiments while
a Hysitron Triboscope with a Digital Instruments AFM with an
indenter tip radius of 80 nm was used for the load control experi-
ments. Two points are clear here. First, the severity of the dis-
placement or load excursion increases as the indenter displace-
ment increases. Second, it is seen for the load control experiments
that there tends to be a clustering of data points with increasing
displacement for the instabilities corresponding to an increase in
oxide film thickness. As measured by ellipsometry, oxide thick-
nesses increased by thermal oxidation at different temperatures
from 3.6 to 17.4 nm �6,13�. The 40 instability points from Tables
2 and 3 are shown in Fig. 6 as a function of the final indenter
displacement, 
 f, after the excursion or load drop arrested. In both
cases it is seen that there is a nearly linear relationship between
the excursions and the final displacement at the end of an excur-
sion, 
 f.

For comparison to the model, one can see from Eqs. �15� and
�17� for 
exc and Pexc that by selecting d	 /	 equal to 0.75 and �
=4, the two instabilities are given by


exc =
2

3

 f ; Pexc = 6�R
 f	flow = 6000 N/m · 
 f . �18�

For the load drops, 	flow was used as 4.0 GPa. The models of Eq.
�18� are shown as the solid and dashed curves in Fig. 6. While the
fit is good for the load control case, the displacement control case
appears to overpredict the magnitude of the load drops. This is
due to the micromechanical test facility used in those early experi-
ments not being fully fixed displacement during the excursion. For
example, the IBM designed nanoindentation system used in those
early experiments �34� exhibited both load drops and displace-
ment excursions in the same event. A typical case where the load
drop was 115 �N at a displacement of 30 nm gave a displacement
excursion of 13 nm at the same time. If such an excursion had not

Table 3 Load excursion data under displacement control for
an oxide film of approximately 17.4 nm „indenter tip was 66 nm
radius…

P0, �N Pf, �N Pexc, �N 
, nm

70 35 35 8
112 55 57 10
100 53 47 16
118 70 48 21
148 48 100 19.5
190 120 70 22.5
225 150 75 27
230 90 140 26
220 115 105 30
300 150 150 34

Table 4 Determination of d�flow from

Oxide film
�averages� 
0, nm 
 f, nm a0

2, nm2

3.6 nm 6.2 14.5 992
5.6 nm 10.3 32.7 1648
9.0 nm 12.8 37.8 2048

17.4 nm 11.5 54.8 1840
Journal of Applied Mechanics
occurred, the load drop would have been greater. The only other
slight deviation are the greater than predicted displacement excur-
sions associated with the crystal covered with the thickest oxide
film. For the 17.4 nm oxide film in Fig. 6, the excursions were
underpredicted by about 20%. We strongly suggest there is an
oxide film thickness effect not fully described by the present
model. Finally, we checked to determine how appropriate our fit-
ting parameters were for obtaining Eq. �18�. In Table 4, calcula-
tions of the incremental flow stress changes for the four different
oxide film thicknesses are shown. These are based on the load
control tests where the constant load was divided by the contact
area at the start and end of the displacement excursion. The aver-
age value of −d	 /	 is 0.7 which is reasonably consistent with the
value of 0.75 used for the models in Fig. 6. Additionally, the value
of 4.0 GPa for 	flow used is realistic for the three smallest oxide
film thicknesses but not the largest. This again suggests a short-
coming of the present model regarding the exact role of oxide film
thickness in these instabilities. Such approaches are under current
investigation, one aspect being discussed elsewhere in terms of a
surface energy argument �26�. Finally, while the modeling has
considered prismatic loops, we have mentioned the possibility of
shear loops as well. Identifying which type is responsible is be-
yond the scope of the present investigation. For the silicon of
Figs. 2–4, the nanosphere orientation is unknown. Even if known,
it is not clear at these very high pressures that undissociated par-
tial dislocations would be involved �35�. For the Fe-3% Si, this
body-centered cubic material could have slip on the �111� planes

but the directions could be any of the �11̄1�, �11̄2� or �123̄� vec-
tors. Not until improved in situ nanoindentation devices incorpo-
rated into transmission electron microscopes are producing data

Fig. 6 Comparison of instability magnitudes from Eq. „18… for
displacement control tests with one film thickness and for load
control tests with four film thicknesses

placement increases at constant load

a1
2, nm2 P, �N

d	flow,
GPa

Initially
observed
	flow, GPa

2320 55.4 −2.7 4.0
5232 102.5 −3.0 4.4
6048 113.5 −2.6 3.9
8768 179 −5.4 6.9
dis
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�25� will such definition be possible for small penetration depths
or small spheres.

Summary
Two plastic instability events that can occur during nanoinden-

tation have been addressed. These involve single loop nucleation
in the absence of oxide film fracture and multiple dislocation ava-
lanches in the presence of oxide film fracture. The external work
done for a single dislocation event is proposed to be mostly ac-
counted for by dislocation work, surface work, and residual stored
elastic energy. For multiple dislocations released during a film
fracture event, it is shown that the instability condition can be
highly sensitive to the oxide film thickness. These events are mod-
eled by an energy balance criterion involving plastic energy ab-
sorbed and surface energy.
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The stresses within the tip of a pencil are examined theoretically,
numerically, and experimentally to determine the position and ori-
entation of the fracture surface. The von Mises stress is used to
evaluate the impact of the normal and shear stresses due to com-
pression, bending, torsion, and shear. The worst-case stress is
shown to occur along the top edge of the inclined pencil point,
where the normal stress is compressive. The resulting crack
propagates diagonally downwards and towards the tip from this
initial position, and is frequently observed to contain a
cusp. �DOI: 10.1115/1.2062847�

Introduction
In 1978 Cronquist �1� analyzed normal stresses in pencil points

to determine why they usually fracture at the same relative dis-
tance from the tip. Cronquist focused on pure bending, ignoring
shear and axial forces. The geometry of the pencil and a complete
set of the external forces acting on it are shown in Fig. 1, neglect-
ing the weight. His analysis of the bending stress concluded that
the onset of fracture occurs along the lower edge of the pencil
cone, beginning at an axial distance x*=x /�=1.5 from the point of
the cone. He also observed that the fracture was largely planar,
inclined up and away from the point. In 1983 Cowin �2� expanded
Cronquist’s analysis by including the axial components of the nor-
mal force and of the frictional force �1N. Both authors neglected
the impact of shear stress, limiting their analyses to failure due to
normal stress.

Analysis
As seen in Fig. 1, the tip of the sharpened cone is truncated by

an amount �. The external forces can be resolved into the follow-
ing internal components of forces and moments �3�
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Axial force: F = − N�sin � − �1 cos �� �1�

Shear force: Vy = − N�cos � + �1 sin �� �2�

Shear force: Vz = − N�2 �3�

Torque: T = �2N� tan � �4�

Bending moment: My�x� = �2N�x − �� �5�

Bending moment: Mz�x� = N�x − ����1 sin � + cos �� − N�� tan ��

��sin � − �1 cos �� �6�

Equations �1�–�6� neglect the impact of elastic deformation of the
pencil geometry. The coefficients �1 and �2 are proportionality
constants similar to coefficients of kinetic friction. For this study,
�1=�2. However, in practice, either constant may lie between
zero and the actual coefficient of kinetic friction, depending on the
pencil orientation and the symbol being written.

Computation of Stress Fields. The stress components �yy, �zz,
and �yz are uniformly zero; the components �xx, �xy, and �xz are
non-zero. The normal stress �xx is a straightforward combination
of uniform compression and bending

�xx�x,y,z� =
F

A�x�
+

My�x�z
I�x�

−
Mz�x�y

I�x�
�7�

Here, A�x� is the cross-sectional area of the pencil point, and I�x�
is the second moment of the cross-sectional area. T, Vy, and Vz all
contribute to both the y and z components of shear in the xy plane.
The shear due to T is circumferential. The shear flow due to Vy is
primarily vertical, but as shown by Gere and Timoshenko �4�,
there must also be a horizontal component. Vz is similar to Vy. The
net resulting shear stresses are

�xy = −
Tz

J�x�
+

Vy�R�x�2 − y2� − Vzzy

3I�x�
�8�

�xz = +
Ty

J�x�
+

Vz�R�x�2 − z2� − Vyzy

3I�x�
�9�

Here, J�x� is the polar moment of the cross-sectional area. From
these stresses, the resulting principle stresses are

�1 =
�xx

2
+

1

2
��xx

2 + 4��xy
2 + �xz

2 ��1/2 �10a�

�2 =
�xx

2
−

1

2
��xx

2 + 4��xy
2 + �xz

2 ��1/2 �10b�

�3 = 0 �10c�

The von Mises stress is computed from the principle stresses, and

simplifies to
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�V = ��xx
2 + 3�xy

2 + 3�xz
2 �1/2 �11�

Failure is assumed to begin at the material point where the von
Mises stress is maximum. Figure 2�a� shows the distribution of
the von Mises stress in an axially oriented vertical plane in the tip.

Examination of Fig. 2�a� reveals three local stress maxima. The
largest and most obvious maximum occurs in a small region near
the tip at the point of application of the normal force N. The
“failure” resulting from this high stress corresponds to the process
of writing. The remaining two maxima occur on the outer surface
of the pencil cone near the upper and lower edges. The lower
maxima corresponds to a point of high tension in the tip, and the
upper to a point of high compression. For typical values of � and
�, the magnitude of stress at the upper maxima is about 30%
higher than that of the lower maxima due to the contribution of
the compressive force F.

To verify the model above, the stresses were also computed
using a commercial finite-element stress analysis package. Figure
2�b� shows the stress distribution for purposes of comparison with
Fig. 2�a�, and shows excellent agreement.

Fig. 1 Forces acting on the pencil tip. Note that the frictional
force �2N points out of the page.

Fig. 2 von Mises Stress distribution in the pencil tip for �=9

finite element results for the vertical axial section of the tip.
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Fracture Initiation Position and Direction. Cronquist’s pri-
mary conclusion was that fracture begins at x*=1.5 for the case
without friction or axial forces �whether failure began on either
the upper or lower edge�. Both Cronquist and Cowin assumed that
since the pencil lead material �a composite of clay and powdered
carbon� is brittle, it is likely to fail at a point of tension rather than
compression. This led them to conclude that crack propagation
began at the lower maxima, propagating up and away from the tip.
However, it is unlikely that a crack would propagate away from
the pencil tip, because this would maximize the fracture area.

Even if the failure is assumed to be brittle, plots of the magni-
tude of the maximum principle stress show essentially the same
distribution as the von Mises stress. Although pencil leads are
brittle, digital photographs of used pencils show evidence of some
plasticity. Also, brittle composite materials frequently have similar
strengths in tension and compression.

Furthermore, the positions of the experimental fractures pre-
sented in the following much more strongly agree with the hy-
pothesis that they initiate on the upper surface, where the stress is
significantly larger. Figure 3 shows the computed positions of the
upper stress maxima with the experimental positions of the frac-
ture surface at its intersection with the upper surface of the cone.
The upper line indicates the case of no friction, and when �=0°, it
also corresponds to the case of no axial force �yielding Cron-
quist’s x*=1.5�. As friction increases, the breaking position moves
slightly towards the pencil point. Pencils are typically used at an
angle �=56 deg±7 deg, for which the breaking point is near x*

=1.7. The experimental data fit well with the predicted positions;
similar plots using the lower stress maxima show no such
agreement.

Our experiments reveal that the fracture surface is not usually
planar. Cracks in isotropic materials propagate in a direction per-
pendicular to the principle directions corresponding to the maxi-
mum principle stress at each point �see, for example, Anderson
�5��. The principle directions are computed from the stress distri-
bution

E� 1 = 1x̂ +
�xy

�1
ŷ +

�xz

�1
ẑ �12a�

E� 2 = 1x̂ +
�xy

�2
ŷ +

�xz

�2
ẑ �12b�

�=55°, �=0.15. „a… Vertical axial section of the pencil tip; „b…
°,
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E� 3 = 0x̂ + 1ŷ −
�xy

�xz
ẑ �12c�

At the point of failure, the largest principle stress is always �2,
and is always negative. Depending on �, ��1� is sometimes larger
than ��2� at points near the lower edge of the pencil. Figure 4
shows the computed fracture lines in the z=0 plane for various �.
The cusp in the fracture surfaces corresponds to the point where
��1� becomes larger than ��2�. Whether failure initiates on the
upper or lower edge, the fracture is seen to always propagate
towards the tip.

As the crack propagates, the stress distribution changes signifi-
cantly, with corresponding changes to the principle directions, so
that the above model cannot remain a valid description of the
system. In actual practice, variations in the details of the fractures
will result from local material impurities. Nonetheless, computa-
tion of the fracture using this method results in good agreement
with experiments.

Digital Photography of Pencil Points
The experimental digital images have 8 bit accuracy and a lin-

ear magnification of 122 pixels/mm. Pencils were sharpened with

Fig. 4 Computed fracture lines in the z=0 plane as a function
of � „for �=9° and �=0.1…

Fig. 3 Impact of friction and writing angle � on the axial break-
ing position x*

„for �=9°…
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an electric sharpener, and rubbed down to create a distinct �
��typical�3 mm�. In contrast to Walker �6�, who examined the
broken tips, this study examined the pencil cone itself, both before
and after breaking. The sharpness angle was determined to be �
=9.0±0.2 deg from the difference in the slopes of the upper and
lower surfaces in these images. The value of x* for the uppermost
position on the fracture was determined by the ratio of the diam-
eter of the pencil at that point �in pixels� divided by the diameter
of the tip prior to breaking. The resulting position x* has an un-
certainty of about ±0.04. In agreement with Walker, x* was ob-
served to depend on �. The measured fracture positions as seen in
Fig. 3 agree well with the predictions.

Figure 5 shows a typical image of a pencil tip after breaking.
The formation of the cusp is evident. The cusp was observed in
about two-thirds of the images examined. Images evidencing a
cusp fell into two broad categories. The majority had curved sur-
faces on the upper and lower sides of the tip. But, several of the
images containing cusps had a curved surface on the upper side of
the pencil, but a short vertical fracture on the lower half. This
corroborates the premise that fractures begin on the upper edge.
Examination of the broken points revealed that even when the
pencil had a cusp, the broken point itself usually appeared to have
a primarily straight fracture surface. It is probable that the broken
point itself separates into two or more pieces, the largest of which
were examined by Cronquist, Cowin, and Walker.
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In this paper, transient three-dimensional response of a trans-
versely isotropic composite plate to a time varying point load is
efficiently computed by reducing the elastodynamic equation
through integral and coordinate transformations to a series of
two-dimensional problems, each associated with a plane wave
along a given direction in the plate. Discrete equations of a semi-
analytical finite element model are solved for the thickness profile
eigendata at a given frequency. Three-dimensional steady state
responses in the wave number domain are formed by summing
contributions from eigenmodes over propagation directions. The
transient response is obtained by a numerical integration of in-
verse Fourier time transform of these steady state responses.
Present results showed good agreement with data reported in the
literature and confirmed previously observed phenomena.
�DOI: 10.1115/1.2070007�

Introduction
Recently, Mal �1� provided an overview of mechanics-based

methods currently used in structural health monitoring �SHM�,
where wave propagation was described as one of the key methods.
For laminated composite structures, where anisotropy and layered
construction are involved, efficient wave propagation analysis
procedures must be foremost to any improvements in effective
evaluation of structural integrity of this class of structures. Herein,
we present an efficient procedure for calculating transient re-
sponse in a laminated composite plate caused by a time varying
point source. The analysis is based on three-dimensional elasticity
theory. This proposed method should advance the state-of-the-art
in analysis tools by virtue of its wider range of application and
greater computational efficiency.
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Several techniques have been set forth for studying wave
propagation in anisotropic plates under some form of forced input,
where spatial Fourier transforms are employed. Transient behavior
in an anisotropic laminated plate due to a point load with time step
input was investigated by Liu et al. �2� using a double Fourier
transform combined with one-dimensional finite elements in the
thickness direction. The infinite Fourier inversion integrals were
evaluated by fast Fourier transform �FFT� �3�. Mal and Lih �4�
applied a multiple transform technique to compute the response of
a unidirectional graphite/epoxy plate to line and concentrated sur-
face loads. The inversion integrals in this multiple transform were
evaluated numerically by a so-called adaptive surface filtering
method �5� to overcome the irregular behavior in the integrand.
Green and Green �6� proposed a computational method for SH
motions due a point load in a nondispersive anisotropic media,
which involves a single infinite integral that was evaluated by a
trapezoidal rule. With regards to SHM of this class of plate struc-
tures, mention is made of Lih and Mal �7� and Banerjee et al. �8�,
who used a first order shear deformation plate theory. These meth-
ods provide reasonably accurate numerical results without incur-
ring inordinate computation.

In this paper, iterated Fourier transforms are applied that con-
vert time and the planar spatial variables into frequency and wave
numbers. A subsequent coordinate rotation is then applied to re-
cast the governing equations in the propagation direction. The
three-dimensional problem is thus converted into a series of two-
dimensional problems, each representing a plane wave. Moreover,
the double Fourier inversion integrals can be transformed to a
single infinite integral running radially and a finite integral over a
full circumferential path �−���� +��. This approach can be
contrasted with that of Liu et al. �2,3�, where the Fourier inver-
sions were effected by a double FFT, which were not considered
herein because of inherent computational inefficiencies. Modal
data representing the thickness dependence of the plane waves are
determined by the method of Dong and Huang �9�, which utilizes
one-dimensional finite elements. The modal data are sought by
subspace iteration. A range of wave numbers and/or frequencies
can be obtained, where the modes of a prior wave number or
frequency is used to start the subspace iteration of the next prob-
lem. Thus, this aspect of the procedure is very efficient as only a
few iterations are needed for convergence. Steady state responses
in the wave number domain are found by a double sum: �1� an
inner sum over the normal modes and �2� an outer sum of the
plane waves over a full circumferential sweep. Steady state
Green’s functions are then obtained by Fourier inversion involv-
ing a single infinite integral only that is evaluated analytically by
Cauchy residue theorem, rather than by numerical integration �6�.
Finally, the transient response is recovered numerically from their
frequency domain by trapezoidal integration of the inverse Fourier
time transform. Comparison of the present results with the results
by Lih and Mal �5� evinced good agreement. The present method
should also extend the range of application of those by Lih and
Mal �7� and Banerjee et al. �8�, which is based on plate theory. By
three-dimensional theory, it will allow a more potent means to
identify the size and shape features of surface breaking or buried
flaws. It is mentioned that other finite element methods have been
applied, see Prosser et al. �10�. Prosser et al.’s code is two-
dimensional �2D�/three-dimensional �3D� in its capability and is
more computationally intensive in comparison to the present
method which uses one-dimensional finite elements. Moreover,
these one-dimensional eigensolutions are evaluated once for a
given composite ply layup over the range of frequencies and
stored. They can then be retrieved for any number of modal syn-
thesis computations. Application of the present technique to
graphite/epoxy plates demonstrates its versatility as well as attrac-

tive computational advantages.
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Analysis
Consider a plate that is composed of linearly elastic, trans-

versely isotropic, perfectly bonded layers. Fourier transformed
displacement equation of motion in the ith layer can be written as

L̃CL̃Tũ + b̃ + ��2ũ = 0

�1�
C is the matrix of elastic moduli, � is the mass density, u
= �ux uy uz�T is the displacement vector, and b= �bx by bz�T is the
vector of body forces. An overtilde indicates spatial Fourier trans-
formation and j is the imaginary unit, j= �−1. For a plane wave
with wave number k traveling in the x� direction, where x� is
oriented at an angle � with the x axis, see Fig. 1, transform vari-
ables � and � in terms of k and � are

� = k cos �; � = k sin � �2�

Transforming governing Eq. �1�, into the �x� ,y� ,z� coordinates
yields

�A1 − jkA2
�

�z
− k2A3

�2

�z2 + ��2	ǔ̃ + b̃
ˇ

= 0 �3�

where matrices A1 ,A2 ,A3, are given by

A1 = 
c55� c55� 0

c45� c44� 0

0 0 c33�
� ,

A2 = 
 0 0 c13� + c55�

0 0 c36� + c45�

c13� + c55� c36� + c45� 0
� ,

A3 = 
c11� c16� 0

c16� c66� 0

0 0 c55�
� , �4�

Fig. 1 Coordinate transforma
where, cij� are the elements of a C� matrix defined as:
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C� = ����C�T���

���� = 

m2 n2 0 0 0 2mn

n2 m2 0 0 0 − 2mn

0 0 1 0 0 0

0 0 0 m − n 0

0 0 0 n m 0

− mn mn 0 0 0 m2 − n2

�
m = cos � n = sin � �5�

As Eq. �3� governs a plane wave with wave number k traveling in
the x� direction, the field variables are independent of y�. Thus the
3D wave propagation problem is decomposed into a series of 2D
problems where all three displacement components are coupled.
Using a displacement-based, Rayleigh-Ritz stiffness method �9�,
Eq. �3� can be recast as a system of algebraic equations, thus Eq.
�3� becomes

�k2K1 − jkK2 − K3 − �2M�Q̃ˇ = F̃
ˇ �6�

where vector Q̃
˘

represents the nodal displacements, F̃
˘

is a consis-
tent load vector of the body forces, and M and Ki �i=1,2 , � are
mass and stiffness matrices, respectively. Note that M, K1, and K3
are symmetric, whereas K2 is antisymmetric; their forms are given
by Dong and Huang �9�. The matrix size of M and K is M by M,
where M =3	 �2NE+1� with NE as the number of elements. Con-

comitantly, vectors F̃
˘

and Q̃
˘

have length M.
Using the modal summation technique �11�, nodal displace-

ments can be expressed as

Q̃
ˇ

= �
m=1

2M

m2

L F̃
ˇ


m1
R

�k − km�Bm
, Bm = 
m2

L B
m1
R


m
L = 
m1

L 
m2
L �, 
m

R = 
m1
R 
m2

R �T �7�

where, 
m
L and 
m

R are the left and right eigenvectors determined
by solving the eigenproblem of Eq. �6�.

Consider a point load acting at �0,0 ,zi�, whose Fourier trans-

form contains the components f̃= fx fy fz�T. In terms of �x� ,y� ,z�,

n into the traveling direction
this load has the form
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f̃
ˇ

= fx cos � + fy sin � − fx sin � + fy cos � fz�T �8�

so that the global load vector F̃
˘

appears as

F̃
ˇ T = 0 . . . 0 f̃

ˆ
x� f̃

ˆ
y� f̃

ˆ
z 0 . . . 0� �9�

Then


m2
L F̃

ˆ
= �̄1 cos � + �̄2 sin � + �̄3;

�̄1 = �1fx + �2fy, �̄2 = �1fy − �2fx, �̄3 = �3fz �10�

where, �1 ,�2 ,�3 are corresponding elements in 
m2
L . Displace-

ment response at any nodal point due to this load can be written
from Eqs. �7� and �9� as

û̃ = �
m=1

2M
�̄1 cos � + �̄2 sin � + �̄3

�km − k�Bm
Um Vm Wm�T �11�

where, Um ,Vm ,Wm are elements in 
m1
R . Recasting Eq. �11� in

cylindrical coordinates �r ,� ,z� followed by an inverse Fourier
transform and some algebraic manipulation that includes the use
of Cauchy’s residue and the middle point integration formula, the
displacement vector for a load in the z direction can be simplified
to

U =
1

�r�m=1

M
�̄3

*km

Bm
* 0 0 Wm

* �T

−
j

2��
i=1

N�

�
m=1

M
�̄3km

Bm
Ūm

i V̄m
i Wm�Tejkmr cos �i

� �12�

where

Ūm
i = Um cos �i − Vm sin �i,

V̄m
i = Um sin �i + Vm cos �i,

�i = i� ,

� = � − � �13�

and N� is the number of sampling points used in numerical inte-
gration over �, a super asterisk indicates quantities belonging to
�i=� /2.

Fig. 3 Scaled normal top surface displac

comparison between PWS „solid line… and Lih

340 / Vol. 73, MARCH 2006
Results and Discussion
Computing the transient response of a 1-mm-thick unidirec-

tional graphite/epoxy plate to a vertical source at the origin has
been reported by Lih and Mal �5�. Their results are used in this

Fig. 2 Variation of displacements along the x direction, 4 mm
from a vertical source in a unidirectional 1-mm-thick graphite/
epoxy plate: „a… with number of sublayers „N�=72…; „b… with
number of propagation directions „NE=10…

ents along 45 deg from the x direction: a
em

and Mal „dashed line…
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brief as benchmark to validate the proposed method. Properties of
the graphite/epoxy as well as time history and amplitude spectrum
of the source can be found therein.

First, convergence of the proposed method is illustrated by us-
ing several combinations of the number of elements, NE, and the
number of propagation directions, N� to predict the response
along x direction at 4 mm from the source. Values of NE equal 10
and 20 at fixed N� of 72 were used to compute the response in
Fig. 2�a�, the difference between the two predictions is hardly
noticeable. In Fig. 2�b�, with NE fixed at 10, there is virtually no
difference between predictions made by N�=72 and N�=90.
Therefore, the values of NE and N� in the example to follow are
prescribed to be 10 and 72, respectively. For these values, the
CPU time on a 1.05 MHz Ultra Sparc III+ processor is about
67 min which is very competitive, for example, with finite ele-
ment method that may take several hours or days �10�.

These values of NE and N� are used in computing normal top
surface response of a unidirectional graphite/epoxy plate 45 deg
off x direction at 5 and 10 mm from the source. Figure 3 shows
these predictions �scaled to the maximum absolute displacement
at 5 mm� in comparison with their counterparts made by Lih and
Mal’s �5�. Very good agreement between the two sets of results is
evident. Figure 4 shows snapshots of normal top surface displace-
ments along 0 deg, 45 deg, and 90 deg from the x direction. It can

Fig. 4 Snapshots, at t=1.9 s, of top surface displacements
along 45 deg, 0 deg, and 90 deg from the x direction
be seen that the excitation propagates faster along the fiber direc-

Journal of Applied Mechanics
tion rather than in the off fiber direction. P, S, and R indicate the
arrival of pressure, shear and Rayleigh waves along x direction,
respectively. A large peak corresponding to the Rayleigh wave is
clear.

Concluding Remarks
A new numerical technique for determining the three-

dimensional transient response of composite plates to a point load
was presented, where the three-dimensional problem is decom-
posed into a series of two-dimensional problems, each associated
with a plane wave. This technique was shown to yield excellent
results when compared with existing data in the literature at a
reasonably lower cost.
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In this paper, we present a nondestructive method based on the
Barkhausen noise effect for estimating internal stress profiles,
with the goal of controlling bearing raceways to determine the
homogeneity of the shot peening process. Given the industrial
imperative to characterize parts, our method concentrates on
stress profiles in the first 60 �m under the surface, in steps of 5 or
10 �m. Our results show the efficient use of Barkhausen noise to
estimate the residual stress profiles of bearing raceways. A map-
ping of the stress profiles measured by Barkhausen noise was
completed for the entire width of an outer ring raceway. This
study confirmed that it is possible to use Barkhausen noise to test
the uniformity of the shot peening treatment and to inspect the
homogeneity of surface and subsurface stresses on the bearing
rings. The proposed method is rapid, well suited to industrial
imperatives connected to on-line measurement, and easily
adapted to the circular geometries of the bearing
rings. �DOI: 10.1115/1.2073329�
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1 Introduction
Bearings in aeronautic engines are subject to extremely severe

running conditions that lead to a hertzien fatigue phenomenon. As
a result of this fatigue, micro-cracks may appear on the contact
area. Without intervention, these cracks can develop until they
cause bearing malfunction, which may lead to engine failure.
Measuring internal stress profiles after the shot peening operation
is thus essential to make sure that the mechanical treatment is
uniform over the entire width of the bearing raceway. Otherwise,
the disparity of bearing raceway stresses could reduce the bearing
fatigue strength. This paper presents a nondestructive method for
identifying the internal stress profiles of the contact areas between
the balls or rollers and their raceways. The method proposed is
consistent enough to evaluate the residual stresses and fast enough
to ensure that the cost of inspecting all the parts is not prohibitive.

The proposed method is based on the phenomenon of
Barkhausen noise �BN�, which is studied in different frequency
analysis ranges in order to determine the internal stress gradient.
The stress just under the surface is represented by a BN parameter
calculated in a high-frequency analysis range. The subsurface
stresses are estimated by increasing the lower bound of the analy-
sis section to provide information on the BN coming from under
the surface. Thus, the stress profile is reconstructed through suc-
cessive searches for stresses at the different analysis depths, with
each stress level being determined through a BN parameter that is
calculated in a typical frequency analysis range for a given depth.
The homogeneity of the shot peening process is verified on the
bearing raceways by setting up a series of profiles for the entire
width of the raceway. Given the success of our current research,
we have begun to consider the possibility of transferring this
method to an industrial environment.

2 Estimation of Internal Stress Profiles Using
Barkhausen Noise

The phenomenon of BN and the influence of stress on the latter
have been well described �1,2�. Many authors have shown that BN
can be used to evaluate surface residual stresses �3,4�. Though
some studies have focused on the estimation of residual stress
profiles, most of these results are qualitative �5,6�. Very few at-
tempts have been made to quantify residual stress profiles �7,8�.
Several authors have shown that BN is subject to an exponential
attenuation in relation to the distance crossed by the electromag-
netic wave moving through the material. These authors used this
attenuation to evaluate surface stress or to average stress for a
given thickness �9–11�. In this article, profiles of the first 60 �m
under the surface, in steps of 5 or 10 �m, can be quantified be-
cause there are reference values coming from the X-ray diffraction
measurements.

In ferromagnetic materials, electromagnetic wave propagation
is always subject to an attenuation that is a function of the fre-
quency. This attenuation phenomenon is essentially due to eddy
currents in a semi-infinite medium �12�. An elementary
Barkhausen event, noted e�f�, can be expressed in terms of fre-
quency according to the formula

e�f� = p�f� � ��f ,d� =
A�� − 2j�f�
�2 + �2�f�2 � exp�− � · d� �1�

where �=����Cf is the attenuation factor depending on the fre-
quency f , on the permeability �, and on the electrical conductivity
�C ; p�f� is the Fourier transformation of an elementary
Barkhausen event; A is the amplitude of the impulse; � is the base
frequency of the event corresponding to the reciprocal of the av-
erage duration of the elementary Barkhausen event �up to 37% of
the amplitude�; and d is the distance between the surface of the

part and the broadcast zone of the Barkhausen event.
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Several studies have shown that the spectrum of a BN is a
function of its broadcast depth �13�. On the other hand, Tiitto �9�
simulated frequency spectra P�f� for frequencies between f1 and
f2 for different thicknesses d using the formula

P�f� =� �0

d

g�f�exp−��.�C.�.f .xdx

�
0

d

g�f�exp−��.�C.�.f1.xdx�
2

�2�

for a random noise g�f�=1. Results show that the greater the
penetration depth d, the narrower the frequency bandwidth. Thus,
based on Titto’s work �9�, for a volume of material presenting a
given level of residual stress, either at or under the surface, the
receiving coil of the sensor situated at the surface of the material
obtains a BN with a certain attenuation that will modify the con-
tent of frequency spectrum. This phenomenon makes it possible to
reconstruct the stress profile. To establish a material’s stress pro-
file, it is necessary to identify the stress levels at a variety of
depths under the surface. In the method that we propose, each
depth is determined by the choice of a specific frequency range;
the stress level is obtained from the analysis of the BN spectrum
in this range.

In our experiments, four samples of 52100 steel were used.
These samples had an identical microstructure and had undergone
fairly harsh shot peening operations, giving them each a specific
compressive stress profile. The different stress profiles were iden-
tical in form: each had a compressive stress field at the surface
and a stress level that decreased �in absolute value� nearly linearly
with depth before becoming tensile, showing a stress level close
to zero �Fig. 1�. Prior to beginning our experiments, X-ray diffrac-
tion was used to measure the stress gradient of each sample, up to
the depth at which the stress became tensile. This method is con-

Fig. 1 Residual stress profile for the four samples of reference
estimated by X-ray diffraction
sidered to be semi-destructive because, given that x rays can only
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go through several micrometers of the material, some chemical
etching is necessary to obtain information about the stress at cer-
tain depths. Samples were labeled according to their level of stress
�S1 to S4�. Sample S1 had the weakest surface compressive stress,
while sample S4 had the strongest surface compressive stress.

The “� scan 500-1” equipment for BN measurement consists of
a magnetizing generator, a sensor, and a computer with a specific
signal processing software. This software acquires and analyzes
the BN signal. The S1-138 sensor, which is made of magnetizing
polar parts and a receipt ferrite that is mounted on springs to
ensure a good contact on varied surfaces, has a frequency band-
width between 3 kHz and 1 MHz. The magnetic excitation is
accomplished by the magnetizing generator via the application of
a sinusoidal voltage whose amplitude ranges from 0 to 20 V and
whose frequency ranges from 1 to 1000 Hz. In our application, the
specific software allows us to process the BN signal in both the
time and frequency domains on frequency analysis bands that
vary from 3 kHz to 1 MHz.

Because the high-frequency components of the Barkhausen sig-
nal attenuate rapidly as the wave progresses through the material,
analyzing the components with the highest frequency made it pos-
sible to concentrate the part of the Barkhausen signal that is typi-
cal of the material’s condition at the surface, and therefore its
surface stress. This bandwidth �FL ;FH� corresponds to that of the
receiving coil. The upper bound of the section is determined by
the bandwidth of the receiving coil, FH, but the lower bound of
the analysis section, FS, had to be determined. To determine this
lower bound, we took ten BN measurements for each sample and
determined the amplitude of each spectrum measurement. After
calculating the average amplitude for each sample, thus establish-
ing the relationship of these measurements with the level of sur-
face residual stress, we looked for the best regression curves �lin-
ear, exponentials,¼� that would allow the evolution of the BN
parameters �amplitude� to be characterized in terms of the surface
stress. Finally, we shifted the lower bound of the analysis fre-
quency range, and we repeated all these steps until we obtained
the optimum correlation coefficient. A computerized search using
an appropriate frequency range allowed us to demonstrate a linear
relationship between the surface residual stress and the BN pa-
rameter. We validated the method on different bearing rings that
had undergone various shot peening operations �14�.

We repeated the steps described in the paragraphs above to
obtain the stress at each given depth, placing the different stresses,
depths, and amplitudes on the spectrums. Sample S1 has a surface
residual stress level equal to �S

1, and samples S2, S3, and S4 has
the same residual stress level at depths d2 , d3, and d4, called
�d2

2 , �d3

3 , and �d4

4 , respectively. Given the attenuation caused by

compressive stress and because �S
1��S

2��S
3��S

3, the depths are
different and are classified as follows: d2�d3�d4 �Fig. 1�. �S

1 is
the amplitude of the frequency spectrum in the analysis range that
characterizes the surface of S1, whose surface stress level is �S

1.
This amplitude �S

1 is thus characteristic of the stress level �S
1.

Since �S
1=�d2

2 =�d3

3 =�d4

4 , the BN emissions from S2, S3, and S4

all present the same amplitude: �S
1. �The emission of the volume

of material in sample S2 whose stress level is �d2

2 at depth d2=the
emission of the volume of material in sample S3 whose stress
level is �d3

3 at depth d3=the emission of the volume of material of

the sample 4 whose stress level is �d4

4 at depth d4.� Because of the
attenuation, decreasing the lower bound of the frequency analysis
range for every spectrum of samples S2, S3, and S4 produces the
amplitude shown in Fig. 2. Therefore, the frequency analysis
ranges �fd2

;FH� , �fd3
;FH�, and �fd4

;FH� are characteristic of the
stress levels corresponding to depths d2 , d3, and d4, respectively.

In order to validate our hypothesis, according to which the
given stress level of a volume of material is characteristic of an
amplitude in the BN spectrum, it was once again necessary to

analyze the frequency ranges of the four stress profiles determined
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by X-ray diffraction. This time, however, we analyzed them for a
certain depth value. Let �i

j equal stress levels, where j is the
number of the sample, Sj, and i is the analysis depth, di. From the
characteristic network depicted in Fig. 1, we calculated the stress
�i

j of each sample for a given depth, di. In the example shown in
Fig. 3�a�, depth equals 5 �m. In order to determine the amplitudes
�i

j that corresponded to the different stresses �i
j �Fig. 3�b��, we

referred to the curve showing amplitude in relation to stress. By
connecting these different amplitudes �i

j to the BN spectrum of
each sample, it was possible to determine the low frequencies f i

j of

Fig. 3 Method for the determination of f

Fig. 2 Principle of determination of frequency analysis ranges
on schematized BN spectrum on samples of reference
profiles and the BN corresponding spectrum

344 / Vol. 73, MARCH 2006
the analysis ranges that correspond to the amplitudes �i
j �Fig. 3�c��

as well as those that, according to our hypothesis, correspond to
the analysis depth di. We generated 30 spectrums for each sample
at three different inspection depths �5, 10, or 15 �m�. By compar-
ing the low frequencies of the analysis range strip �f i

1 , f i
2 , f i

3 , f i
4�,

we were able to verify the relevance of the analysis range in
relation to the stress level at the given depths.

The low frequencies of the frequency analysis ranges �betweeen
300 kHz and 1 MHz� are specific to the four samples of 52100
steel. The entire range is not given here for reasons of confiden-
tiality. However, the lower bounds for each depth are very close
�f5

1	 f5
2	 f5

3	 f5
4 ; f10

1 	 f10
2 	 f10

3 	 f10
4 ; f15

1 	 f15
2 	 f15

3 	 f15
4 �, and

the standard deviations of the lower bound are 5, 6, and 10 kHz,
respectively. Thus, taking the low frequency values of the lower
bounds into account, these standard deviations allow us to analyze
the results and to verify the reproducibility of the method. The
results show that this method is satisfactory: given four samples
with different stress profiles, the same analysis range is system-
atically found to characterize the four different internal stress lev-
els at the same depth. Standard deviations obtained on the lower
bounds for each depth are weak for the three depths tested. The
close correlation between frequency range and analysis depth was
also verified for other raceways, by testing different rings made of
diverse materials, and some of the results of these tests are pre-
sented in the last section of this paper. Obviously, because the
ranges are specific to the magnetic microstructures of materials,
the stress profile samples used to determine the analysis ranges
had to be identical in shape. Since each batch of tested parts has
its own “metallurgic history” �composition, thermal cycles, ther-
mal and mechanical treatments, etc.�, a calibration phase was nec-
essary for each one in order to guarantee profile homogeneity.

There appears to be an exponential evolution of the lower
bound in relation to the depth of inspection. This evolution is
quite important because it allows other frequency analysis ranges,
corresponding to other inspection depths �20, 30, 50, and 60 �m�,
to be determined through extrapolation. This extrapolation is sig-
nificant for two reasons. First, in order for the method to be ac-
cepted by industry, it must be both rapid and simple to use. As
stated above, the analysis ranges are determined during a calibra-

uency analysis ranges with schematized
req
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tion phase and are specific to the magnetic microstructures of the
materials, and so, because of their “metallurgical history,” are also
specific to each batch of parts to be tested. If it is possible, given
the lower bound of the first frequency, to deduce the others by
extrapolating the curve of this lower bound in relation to depth,
much time can be saved in the calibration phase. Second, finding
the frequency corresponding to the lower bound of a BN spectrum
amplitude is sometimes difficult because spectrum fluctuations are
more and more striking as the frequency of the lower bound de-
creases. Because of this fluctuation, the standard deviation of a
lower bound value is greater for f10

i than for f5
i and for f15

i than for
f10
i .

3 Testing of Homogeneity of Shot Peening Operation
on Aeronautic Bearings

In order to characterize the homogeneity of residual stress pro-
files, we checked bearing rings by creating a series of profiles for
the entire width of the raceway. The shot peening used to control
the stress profile in raceways employs ultrasonic sounds that cause
ball movement in a cavity. Depending on the parameters of this
shot peening process, different stress profiles can be obtained. The
microstructure effect introduced by shot peening is considered
along with stress because these two phenomena are intimately
linked. However, this dual aspect is ultimately unimportant since
the stress estimation is compared with X-ray measurements.

For the example presented in this article, we performed 14 pro-
files for the area between the top and the bottom of the raceway.
Figure 4 depicts the mapping of the BN-measured stress profiles
for the entire width of an outer ring raceway of M50 steel. Sig-
nificant deviations can be noted. Surface stresses vary from −600
to −400 MPa between the top and the bottom of the raceway; the

Fig. 4 Mapping of stress profiles by Barkhausen noise on the
width of a bearing ring
transformation into tensile stresses occurs at approximately
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35 �m under the surface on the bottom of the raceway, whereas it
occurs at 8 �m under the surface at the top of the raceway. This
dissimilarity was confirmed by comparing the BN-measured stress
profiles of the whole batch of rings, with the profiles of the middle
and top of the raceways of two rings, which were measured using
X-ray diffraction �Fig. 5�. As the stress profile obtained for the top
of the raceway clearly shows, such divergence can be very impor-
tant. In this example, the internal stresses in that part of the race-
way cannot guarantee the good, long-lasting fatigue strength of
the material. By showing that the stress profiles were not similar
for the whole width of the raceway, our mapping revealed the
nonhomogeneity of this shot peening operation, which made us
question the homogeneity of the shot peening process in general.
After conversation with our supplier, we identified a dissimilarity
in the geometry of the shot peening cavity and were able to
modify it to allow a homogeneous operation. Clearly, Barkhausen
analysis offers a consistent and appropiate nondestructive method
that, in this case, allowed us to correct the problem of nonhomo-
geneity in the shot peening process.

4 Conclusion
In this paper, we presented a nondestructive method for esti-

mating residual stress profiles, based on the BN effect. This
method was validated on several batches of bearings. Given the
industrial imperative to characterize parts, we concentrated our
efforts on stress profiles in the first 60 �m under the surface. We
show the efficiency of the Barkhausen noise effect for estimating
these residual stress profiles in bearing raceways. This study
clearly shows that, in the future, it will be possible to inspect the
homogeneity of surface and subsurface stresses on the bearing
rings at any stage of the manufacturing process, regardless of the
treatments that have been effected. Given that safety standards
today are not always met through a statistical control of the parts,
we propose a fast magnetic method that is compatible with indus-
trial needs associated with on-line measurement and can inspect
100% of the parts produced. Such verification is more and more
necessary; in fact, it is essential in order to guarantee an extended

Fig. 5 Evaluation of two stress profiles by Barkhausen noise
and X-ray diffraction methods
life span for engine bearings.
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1 Analysis of the Complementary Elastic Energy
The complementary elastic energy is assumed by authors to be

(see Eq. �2� of �1�)

Ue��,D� =
1

2E
tr���̃�+2� +

1

2E
tr���̃�−2� +

1

2E�tr���̃�2� − �̃ii
2�

−
�

2E��tr��̃��2 − tr���̃�2��
The projector tensors are introduced as in Eq. �3� of �1�:

�+ = P+��,D�:� and �− = P−��,D�:� �A1�

It can be interesting to simplify the model in order to check some
properties in simple cases. One can assume, for instance, that the

damage tensor and the stress tensor have the same principal direc-
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tions. In this case, the projection tensor only depends on the stress
tensor as

�+ = P+���:� and �− = P−���:� �A2�

This is the classical projection tensor introduced by Ortiz �2�. One
can, moreover, assume that the material in undamaged:

D = 0 Þ M�D� = 1 Þ �̃ = �

The complementary elastic energy is then reduced to

Ue��� =
1

2E
tr����2� +

1

2E
�tr����2� − �ii

2� −
�

2E
��tr����2

− tr����2�� with �+ + �− = �

It can be noticed that the function Ue is not an isotropic tensorial
function. It is clear, for instance, that the function

f��� = �ii
2

is not an isotropic tensorial function. It is sufficient to show that
an orthogonal tensor can be found such as �3�

$Q/f�Q�QT� � f���
In this simplified case, the elastic constitutive law is given by

� =
�Ue���

��
Þ � =

1 + �

E
� −

�

E
�tr��1 +

1

E
�� − �iiei � ei�

�A3�
The authors assume that this relation is only true in the principal
damage directions which are not necessarily the same as the one
of the stress tensor �in the general case�. For instance, for the
undamaged material, this relation should be verified whatever the
directions, and the classical elastic linear isotropic relation is not
found.

2 On the Projection Derivative Operator
We think that there are some difficulties in the derivation of the

projection tensor. It has been shown, for instance, that

��+

��
:�+ = �+ and

��−

��
:�− = �−

when the damage principal axes coincide with the one of the
stress tensor, as it is the case in Eq. �A2� �4�. This relation is
implicitly used in most stress-based anisotropic damage modeling
including unilateral effects �see, for instance, �5��. However, this
relation is no more true in the case considered by authors, and
given by Eq. �A1�, when the principal axes of the damage tensor
do not coincide with the one of the stress tensor. Following the
reasoning of �4�, it can be shown for a two-dimensional problem
that

�11
+ =

hI�I + hII�II +
hI�I − hII�II cos 2�
2 2
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�22
+ =

hI�I + hII�II

2
−

hI�I − hII�II

2
cos 2�

�12
+ = �hI�I − hII�II�sin 2�

with

� − �0 =
1

2
arctan

�12

�11 − �22
and �12 = �12 + �21

�0 is the rotation value between the principal axes of the stress
tensor and the one of the damage tensor. hI and hII are two Heavi-
side functions of the principal stresses:

hI = H��11 + �22

2
+

�11 − �22

2 cos�2� − 2�0�
�

hII = H��11 + �22

2
−

�11 − �22

2 cos�2� − 2�0�
�

The Jacobian matrix �J� can be introduced as

�J��11,�22,�12�� =	
��11

+

��11

��22
+

��11

��12
+

��11

��11
+

��22

��22
+

��22

��12
+

��22

��11
+

��12

��22
+

��12

��12
+

��12



In this case, the Jacobian can be more easily evaluated for �=�0:

�
��+

��
:�+��=�0

=	
��11

+

��11

��22
+

��11

��12
+

��11

��11
+

��22

��22
+

��22

��12
+

��22

��11
+

��12

��22
+

��12

��12
+

��12



��=�0�

	 �11
+

�22
+

�12
+ 


It is easy to calculate the first line:

�
��11

+

��11
��=�0� = hI +

hI

2
�1 + cos2�0� ; �

��22
+

��11
��=�0� =

hI

2
�1 + cos2�0�
and
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�
��12

+

��11
��=�0� = hI sin2�0

It appears that

��11
+

��11
�11

+ +
��22

+

��11
�22

+ +
��12

+

��11
�12

+ � �11
+ except for �0 = 0

As a conclusion, the relation

��+

��
:�+ = �+ and

��−

��
:�− = �−

is not true when the principal axes of the damage tensor and the
ones of the stress tensor do not coincide. As a consequence, the
calculation of the strain variable from the derivation of the
complementary elastic energy is difficult to achieve with the pre-
sented model. This is furthermore more difficult to achieve when
considering the fourth-order damage operator:

��P+:M:�
��

:�̃+ � �̃+ and

��P−:M:�
��

:�̃− � �̃−

These remarks concern the thermodynamical background of the
developed model. Similar remarks can be formulated for the deri-
vation of the damage strain energy release rate as the projective
tensor also depends on the damage tensor �see �6� without intro-
ducing this coupling�.
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1 Analysis on the Complementary Elastic Energy
If we compare the first equation of the Discussion to Eq. �2� of

the paper, we can remark that the authors of the Discussion have

misunderstood the former equation,
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2E
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+�̃ii
+ �

1

2E
tr���̃+�2�

1

2E
�ii

−�ii
− �

1

2E
tr���̃−�2�

Considering this, their remark is irrelevant. Nevertheless, we can
observe easily that in the particular case �D�=0, Eq. �2� is simpli-
fied to Eq. �1� of the paper,

Ue��,�D� = 0� =
1

2E
���ii

+�ii
+ + �ii

−�ii
− + �ij�ij�i�j� −

�

E
��ii� j j − �ij�ij�

=
1

2E
���:��� −

�

E
��tr����2 − tr����2��

Furthermore, we can observe that if we put �D�=0, the fourth-
order damage operator defined in Eq. �6� becomes �M�= �I4�.
Thus, in this particular case, Eq. �9� is exactly equal to the clas-
sical complementary energy presented at Eq. �1�.

2 On the Projection Derivative Operator
The authors of the Discussion mentioned that “when the prin-

cipal axes of the damage tensor do not coincide with the one of
the stress tensor,” some relations presented in the paper are not
applicable. We agree with this affirmation because we mentioned
it in Sec. 2.3 of the paper and in the Conclusion. When we spoke
about proportional loading, this means that the principal stress
directions, and thus, those of damage tensor, are identical and do
not change during loading. We apologize not having mentioned it

more clearly at the beginning of the paper.
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